References
<A NAME="RU07405ST-1A">1a</A>
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RU07405ST-1B">1b</A>
Basavaiah D.
Pandiaraju S.
Padmaja K.
Synlett
1996,
393
<A NAME="RU07405ST-1C">1c</A>
Basavaiah D.
Darma RP.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RU07405ST-1D">1d</A>
Li G.
Wei H.-X.
Gao JJ.
Caputo TD.
Tetrahedron Lett.
2000,
41:
1
<A NAME="RU07405ST-1E">1e</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
<A NAME="RU07405ST-1F">1f</A>
Yeo JE.
Yang XL.
Kim HJ.
Koo S.
Chem. Commun.
2004,
236
<A NAME="RU07405ST-2A">2a</A>
Brzezinski LJ.
Rafel S.
Leahy JM.
J. Am. Chem. Soc.
1997,
119:
4317
<A NAME="RU07405ST-2B">2b</A>
Iwabuchi Y.
Nakatani M.
Yokoyama N.
Hatakeyama S.
J. Am. Chem. Soc.
1999,
121:
10219
<A NAME="RU07405ST-2C">2c</A>
Marko IE.
Giles PG.
Hindley NJ.
Tetrahedron
1997,
53:
1015
<A NAME="RU07405ST-2D">2d</A>
Langer P.
Angew. Chem. Int. Ed.
2000,
39:
3049
<A NAME="RU07405ST-3A">3a</A>
Marson CM.
Harper S.
Oare CA.
Walsgrove T.
J. Org. Chem.
1998,
63:
3798
<A NAME="RU07405ST-3B">3b</A>
Perlmutter P.
Tabone M.
J. Org. Chem.
1995,
60:
6515
<A NAME="RU07405ST-3C">3c</A>
Fenical W.
Chem. Rev.
1993,
93:
1673
<A NAME="RU07405ST-3D">3d</A>
Garson MJ.
Chem. Rev.
1993,
93:
1699
<A NAME="RU07405ST-3E">3e</A>
Hoffman HMR.
Rabe J.
J. Org. Chem.
1985,
50:
3849
<A NAME="RU07405ST-4A">4a</A>
Ciganek E.
Org. React.
1997,
51:
201
<A NAME="RU07405ST-4B">4b</A>
Roth F.
Gygax P.
Frater G.
Tetrahedron Lett.
1992,
48:
6371
<A NAME="RU07405ST-4C">4c</A>
Drewes SE.
Njamela OL.
Emslie ND.
Ramesar N.
Field JS.
Synth. Commun.
1993,
23:
2807
<A NAME="RU07405ST-5A">5a</A>
Zhu N.
Hall DH.
J. Org. Chem.
2003,
68:
6066
<A NAME="RU07405ST-5B">5b</A>
Krause N.
Gerold A.
Angew. Chem., Int. Ed. Engl.
1997,
36:
186
<A NAME="RU07405ST-5C">5c</A>
Marino JP.
Linderman RJ.
J. Org. Chem.
1983,
48:
4621
<A NAME="RU07405ST-5D">5d</A>
Corey EJ.
Katzenellenbogen JA.
J. Am. Chem. Soc.
1969,
91:
1851
<A NAME="RU07405ST-6A">6a</A>
Tsuda T.
Yoshida T.
Saegusa T.
J. Org. Chem.
1988,
53:
1037
<A NAME="RU07405ST-6B">6b</A>
Tsuda T.
Yoshida T.
Kawamoto T.
Saegusa T.
J. Org. Chem.
1987,
52:
1624
<A NAME="RU07405ST-7A">7a</A>
Ramachandran PV.
Reddy MVR.
Rudd MT.
de Alaniz JR.
Tetrahedron Lett.
1998,
39:
8791
<A NAME="RU07405ST-7B">7b</A>
Ramachandran PV.
Ram Reddy MV.
Rudd MT.
Tetrahedron Lett.
1999,
40:
627
<A NAME="RU07405ST-7C">7c</A>
Ramachandran PV.
Ram Reddy MV.
Rudd MT.
Chem. Commun.
1999,
1979
<A NAME="RU07405ST-7D">7d</A>
Li G.
Wei HX.
Willis S.
Tetrahedron Lett.
1998,
39:
4607
<A NAME="RU07405ST-7E">7e</A>
Chen D.
Timmons C.
Liu JY.
Hendley A.
Li G.
Eur. J. Org. Chem.
2004,
3330
<A NAME="RU07405ST-8A">8a</A>
Kabalka GW.
Yu S.
Li N.-S.
Lipprandt U.
Tetrahedron Lett.
1999,
40:
37
<A NAME="RU07405ST-8B">8b</A>
Yu S.
Li NS.
Kabalka GW.
J. Org. Chem.
1999,
64:
5822
For conjugate addition of zinc-copper reagents to acetylenic esters, see:
<A NAME="RU07405ST-9A">9a</A>
Knochel P.
Singer RD.
Chem. Rev.
1993,
93:
2117
<A NAME="RU07405ST-9B">9b</A>
Knoess HP.
Furlong MT.
Rozema MJ.
Knochel P.
J. Org. Chem.
1991,
56:
5974
<A NAME="RU07405ST-9C">9c</A>
Jubert C.
Knochel P.
J. Org. Chem.
1992,
57:
5425
For copper-catalyzed conjugate addition of zinc reagents to acetylenic esters, see:
<A NAME="RU07405ST-10A">10a</A>
Crimmins MT.
Nantermet P.
J. Org. Chem.
1990,
55:
4235
<A NAME="RU07405ST-10B">10b</A>
Crimmins MT.
Nantermet PG.
Trotter BW.
Vallin IM.
Watson PS.
McKerlie LA.
Reinhold TL.
Cheung AW.-H.
Stetson KA.
Dedopoulou D.
Gray JL.
J. Org. Chem.
1993,
58:
1038
For conjugate addition of organozinc reagents to acetylenic ketones, see:
<A NAME="RU07405ST-11A">11a</A>
Brunner M.
Maas G.
Synthesis
1995,
957
<A NAME="RU07405ST-11B">11b</A>
Nakamura E.
Kuwajima I.
J. Am. Chem. Soc.
1984,
106:
3368
<A NAME="RU07405ST-12A">12a</A>
Xue S.
Li YL.
Han KZ.
Yin W.
Wang M.
Guo QX.
Org. Lett.
2002,
4:
905
<A NAME="RU07405ST-12B">12b</A>
Xue S.
Han KZ.
He L.
Guo QX.
Synlett
2003,
870
<A NAME="RU07405ST-13">13</A>
Typical Procedure for Reaction of α,β-Acetylenic Ketones with CF
3
CO
2
ZnEt and Aldehydes.
To a solution of Et2Zn (78.5 µL, 0.75 mmol) in 2 mL CH2Cl2 at 0 °C was added dropwise CF3COOH (58 µL, 0.75 mmol) slowly via syringe under N2. After stirring for 30 min at 0 °C, aldehyde (0.5 mmol) was added, and then acetylenic
ketone (0.75 mmol) was added. The mixture was stirred for 5 h at r.t. until TLC indicated
complete consumption of the starting aldehyde. The reaction was quenched by sat. aq
NH4Cl and extracted with Et2O (3 × 10 mL). The combined organic extracts was washed with brine, dried over MgSO4 and concentrated under reduced pressure to an oil residue. The desired product was
isolated by silica gel chromatography with petroleum ether-EtOAc (10:1 to 5:1). Data
for compound 2a: 1H NMR (300 MHz, CDCl3): δ = 7.18 (d, J = 8.5 Hz, 2 H), 6.80 (d, J = 8.5 Hz, 2 H), 5.80 (t, J = 7.5 Hz, 1 H), 5.32 (d, J = 4.9 Hz, 1 H), 3.72 (s, 3 H), 2.75 (d, J = 4.9 Hz, 1 H), 2.22 (dq J = 7.5, 7.5 Hz, 2 H), 2.10 (s, 3 H), 0.99 (t, J = 7.5 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 204.63, 159.18, 142.98, 138.67, 133.96, 127.81, 113.92, 75.07, 55.31, 31.67,
22.87, 14.01 ppm. IR (neat):
ν = 3435, 2966, 2838, 1683, 1611, 1585, 1512, 1249, 1174, 1033, 837 cm-1. HRMS (CI): m/z calcd for C14H19O3 [MH+]: 235.1334; found: 235.1336.
<A NAME="RU07405ST-14">14</A>
Crystal data of 2f: C13H15NO4, crystal system, orthorhombic; space group, Pbca; unit cell dimensions, a = 11.403 (2) Å, α = 90°; b = 8.844 (1) Å, β = 90°; c = 25.584 (4) Å, γ = 90°; volume, Z = 2580.14 (52) Å3; D
cald = 1.283 g/cm3; Z = 8; µ = 0.096 mm-1; F
000 = 1056; full-matrix least-squares refinement on F2; final R indices [I>2σ(I)], R1 = 0.0385, wR2 = 0.0831; R indices (all data), R1 = 0.0922, wR2 = 0.0927.
<A NAME="RU07405ST-15A">15a</A>
Taniguchi M.
Hino T.
Kishi Y.
Tetrahedron Lett.
1986,
27:
4767
<A NAME="RU07405ST-15B">15b</A>
Taniguchi M.
Kobayashi S.
Nakagawa M.
Hino T.
Kishi Y.
Tetrahedron Lett.
1986,
27:
4763
<A NAME="RU07405ST-16">16</A>
Kinoshita S.
Kinoshita H.
Iwamura T.
Watanabe S.
Kataoka T.
Chem.-Eur. J.
2003,
9:
1496