References
<A NAME="RD39204ST-1">1</A>
Jiang S.
McCullogh KJ.
Mkki B.
Singh G.
Wightman RH.
J. Chem. Soc., Perkin Trans. 1
1997,
1805
<A NAME="RD39204ST-2">2</A>
Rudge AJ.
Collins I.
Holmes AB.
Baker R.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2320
<A NAME="RD39204ST-3">3</A>
Panfil I.
Chmielewski M.
Tetrahedron
1985,
41:
4713 ; and references cited therein
<A NAME="RD39204ST-4">4</A>
Shing TKM.
Elsley DA.
Gillhouley JG.
J. Chem. Soc., Chem. Commun.
1989,
1280
<A NAME="RD39204ST-5">5</A> For a comprehensive review, see:
Gallos JK.
Koumbis AE.
Curr. Org. Chem.
2003,
7:
397
<A NAME="RD39204ST-6">6</A> Example of monograph:
Monosaccharides: Their Chemistry and their Roles in Natural Products
Collins P.
Ferrier R.
John Wiley and Sons Ltd;
Chichester:
1998.
<A NAME="RD39204ST-7">7</A>
Lee HH.
Hodgson PG.
Bernacki RJ.
Korytnyk W.
Sharma M.
Carbohydr. Res.
1998,
176:
59
<A NAME="RD39204ST-8A">8a</A>
Hudlicky JM. In
Oxidations in Organic Chemistry
American Chemical Society Monograph;
Washington D. C.:
1990.
p.33
<A NAME="RD39204ST-8B">8b</A> For an alternative method using the Dess-Martin periodinane method:
Liu B.
Zhou WS.
Tetrahedron Lett.
2003,
44:
4933
<A NAME="RD39204ST-9">9</A>
Ratcliffe R.
Rodehorst R.
J. Org. Chem.
1970,
35:
4000
<A NAME="RD39204ST-10A">10a</A>
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
<A NAME="RD39204ST-10B">10b</A>
Fitjer L.
Quabeck U.
Synth. Commun.
1985,
15:
855
<A NAME="RD39204ST-10C">10c</A>
Leeuwenburgh MA.
Overkleeft HS.
Van Der Marel GA.
Van Boom JH.
Synlett
1997,
1263
<A NAME="RD39204ST-11">11</A>
Peterson DJ.
J. Org. Chem.
1968,
8:
780
<A NAME="RD39204ST-12">12</A>
Greene TW.
Wuts PGM. In
Protective Groups in Organic Synthesis
2nd ed.:
Greene TW.
Wuts PGM.
Wiley Interscience;
New York:
1991.
p.123-127
Examples:
<A NAME="RD39204ST-13A">13a</A>
Harwood LM.
Kitchen LC.
Tetrahedron Lett.
1993,
34:
6603
<A NAME="RD39204ST-13B">13b</A>
Bashiardes G.
Safir I.
Barbot F.
Laduranty J.
Tetrahedron Lett.
2003,
44:
8417
<A NAME="RD39204ST-14">14</A>
It should be noted that this is a suitable entry point for introducing diversity,
since hydroxylamines of multiple variation are very readily accessible.
<A NAME="RD39204ST-15">15</A>
Typical Procedure for the Synthesis of (3a
S
,4
R
,5
S
,6
R
,7
S
,7a
S
)-1-methyl-3a-phenyloctahydrobenzo[
c
]isoxazole-4,5,6,7-tetraol Tetraacetate 12c.
Thermal conditions: in a two-necked, round-bottomed flask equipped with a magnetic
stirring bar, a reflux condenser and a thermometer, NaHCO3 (218 mg, 2.6·10-3 mol, 2.6 equiv) was added to a solution of carbohydrate 10 (252 mg, 1.0·10-3 mol) and N-isopropylhydroxylamine hydrochloride (290 mg, 2.6·10-3 mol, 2.6 equiv) in 80% aq EtOH (15 mL). The mixture was stirred under reflux during
48 h. After cooling and removal of the solvent under reduced pressure, Ac2O (0.6 mL), pyridine (1 mL), DMAP (cat.), and CH2Cl2 were added. The mixture was stirred at r.t. during 6 h. The mixture was then washed
with 3 × 6 mL of H2O. The solvent was removed under reduced pressure and the resulting oil was purified
by flash chromatography on silica gel (EtOAc-CH2Cl2, 20:80, R
f
= 0.36) to provide 12c in 61% yield as a yellowish oil.
1H NMR (CDCl3): δ = 2.16 (s, 12 H, CH
3
-CO-), 2.54 (s, 3 H, H-8), 2.74 (dd, J
7,7
′ = 13.9 Hz, J7-1 = 7.1 Hz, 1 H, H-7), 3.10 (d, J
7
′
,7 = 13.9 Hz, 1 H, H-7′), 3.58-3.60 (m, 1 H, H-1), 5.00-5.60 (m, 4 H, H-2, H-3, H-4,
H-5), 7.23-7.39 (m, 5 H, H-10, H-11, H-12, H-13, H-14) ppm.
13C NMR (CDCl3): δ = 20.3, 20.8, 21.0, 21.1 (CH3-CO-), 33.8 (C-7), 47.0 (C-8), 63.1 (C-1), 71.3 (C-2), 71.4, 71.5, 71.6 (C-3, C-4
et C-5), 86.5 (C-6), 126.5 (C-12), 127.6, 127.7 (C-11, C-13, C-10, C-14), 143.4 (C-9),
168.4, 169.2, 170.1, 170.5 (C=O) ppm.
IR: 3023 s (arom. =CH), 2966 m, 2930 w (CHn), 1742 s (C=O), 1538 w, 1493 w, 1448 s (arom. C=C), 1372 s (C-N), 1217 s (C-O), 754
s, 703 s (arom. C-H) cm-1.
Compound 12a Major Conformer:
1H NMR (CDCl3): δ = 1.99, 2.02, 2.04, 2.13 (4 s, 12 H, CH
3
), 2.27 (dd, J
8,8bis = 13.0 Hz, J
8,7a = 10.0 Hz, 1 H, H-8), 3.01 (d, J
8bis,8 = 13.0 Hz, 1 H, H-8bis), 3.60 (dd, J
7a,8 = 10.0 Hz, J
7a,7 = 2.0 Hz, 1 H, H-7a), 4.18 (d, J
3,3bis = 13.4 Hz, 1 H, H-3), 4.21 (d, J
3bis,3 = 13.4 Hz, 1 H, H-3bis), 5.11 (dd, J
7,6 = 8.8 Hz, J
7,7a = 2.0 Hz, 1 H, H-7), 5.31 (d, J
4,5 = 8.6 Hz, 1 H, H-4), 5.40 (dd, J
5,4 = 8.6 Hz, J
5,6 = 1.4 Hz, 1 H, H-5), 5.43 (dd, J
6,7 = 8.8 Hz, J
6,5 = 1.4 Hz, 1 H, H-6), 7.13-7.31 (m, 10 H, H-arom.) ppm.
13C NMR (CDCl3): δ = 20.1, 20.5, 20.9, 21.0 (CH3), 34.6 (C-3), 62.9 (C-8), 63.9 (C-7a), 70.2 (C-7), 73.5, 73.6 (C-5, C-6), 74.1 (C-4),
87.0 (C-3a), 126.1, 128.0, 128.2, 128.6, 129.8 (C-10, C-11, C-12, C-13, C-14, C-16,
C-17, C-18, C-19, C-20), 134.3 (C-9), 140.0 (C-15), 168.4, 169.3, 169.7, 170.5 (C=O)
ppm.
IR: 3020 m (arom. =CH), 2989 s, 2934 m (CHn), 1741 s (C=O), 1497 m, 1450 m (arom. C=C), 1370 s (C-N), 1218 s (C-O), 755 s, 701
s (arom. C-H) cm-1.
Compound 12a Minor Conformer:
1H NMR (CDCl3): δ = 1.99, 2.02, 2.04, 2.13 (4 s, 12 H, CH
3
), 2.81 (dd, J
8,8bis = 13.8 Hz, J
8,7a = 6.7 Hz, 1 H, H-8), 3.19 (d, J
8bis,8 = 13.8 Hz, 1 H, H-8bis), 3.57 (d, J
3,3bis = 12.9 Hz, 1 H, H-3), 3.86 (dd, J
7a,8 = 6.7 Hz, J
7a,7 = 3.9 Hz, 1 H, H-7a), 3.86-3.96 (m, 2 H, H-6, H-4), 3.91 (d, J
3bis,3 = 12.9 Hz, 1 H, H-3bis), 5.04 (dd, J
5,4 = 4.1 Hz, J
5,6 = 1.3 Hz, 1 H, H-5), 5.17 (dd, J
7,7a = 3.9 Hz, J
7,6 = 3.8 Hz, 1 H, H-7), 7.13-7.31 (m, 10 H, H-arom.) ppm.
13C NMR (CDCl3): δ = 20.1, 20.5, 20.9, 21.0 (CH3), 34.3 (C-3), 62.1 (C-8), 66.2 (C-7a), 71.9 (C-7), 72.4, 72.6 (C-4, C-6), 75.5 (C-5),
88.2 (C-3a), 126.7, 127.7, 127.8, 128.4, 128.9 (C-10, C-11, C-12, C-13, C-14, C-16,
C-17, C-18, C-19, C-20), 135.8 (C-9), 142.1 (C-15), 168.4, 169.3, 169.7, 170.5 (C=O)
ppm.
IR: 3020 m (arom. =CH), 2989 s, 2934 m (CHn), 1741 s (C=O), 1497 m, 1450 m (arom. C=C), 1370 s (C-N), 1218 s (C-O), 755 s, 701
s (arom. C-H) cm-1.
Compound 12b:
1H NMR (CDCl3): δ = 2.16 (s, 12 H, CH
3
-CO-), 2.54 (s, 3 H, H-8), 2.74 (dd, J
3,3bis = 13.9 Hz, J
3-7a = 7.1 Hz, 1 H, H-3), 3.10 (d, J
3bis,3 = 13.9 Hz, 1 H, H-3bis), 3.58-3.60 (m, 1 H, H-7a), 5.00-5.60 (m, 4 H, H-4, H-5, H-6,
H-7), 7.23-7.39 (m, 5 H, H-10, H-11, H-12, H-13, H-14) ppm.
13C NMR (CDCl3): δ = 20.3, 20.8, 21.0, 21.1 (CH3-CO-), 33.8 (C-3), 47.0 (C-8), 63.1 (C-7a), 71.3 (C-7), 71.4, 71.5, 71.6 (C-4, C-5,
C-6), 86.5 (C-3a), 126.5 (C-12), 127.6, 127.7 (C-11, C-13, C-10, C-14), 143.4 (C-9),
168.4, 169.2, 170.1, 170.5 (C=O) ppm.
IR: 3023 s (arom. =CH), 2966 m, 2930 w (CHn), 1742 F (C=O), 1538 w, 1493 w, 1448 s (arom. C=C), 1372 s (C-N), 1217 s (C-O), 754
s, 703 s (arom. C-H) cm-1.
<A NAME="RD39204ST-16A">16a</A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199 ; and references therein
<A NAME="RD39204ST-16B">16b</A>
Bashiardes G.
Safir I.
Said Mohamed A.
Barbot F.
Laduranty J.
Org. Lett.
2003,
5:
4915
<A NAME="RD39204ST-16C">16c</A>
De La Hoz A.
Diaz-Ortiz A.
Langa F. In Microwaves in Organic Synthesis
Loupy A.
Wiley-VCH;
Germany:
2003.
<A NAME="RD39204ST-17">17</A>
Typical procedure for the synthesis of (3a
S
,4
R
,5
S
,6
R
,7
S
,7a
S
)-1-methyl-3a-phenyloctahydrobenzo[c]isoxazole-4,5,6,7-tetraol tetraacetate 12c.
Microwave conditions: in a pyrex test tube (2 × 15), NaHCO3 (218 mg, 2.6·10-3 mol, 2.6 equiv), N-isopropyl-
hydroxylamine hydrochloride (290 mg, 2.6·10-3 mol, 2.6 equiv), carbohydrate 10 (252 mg, 1.0·10-3 mol) and 80% aq EtOH (1 mL) were submitted to microwave irradiations (CEM Discover apparatus. Settings: 70 °C, 100 W) during 80 min. After cooling and the solvent evaporated
under reduced pressure, the crude product was acetylated and purified as in Ref. 15.