ABSTRACT
The underlying molecular basis for the heterogeneity in human liver cancer, hepatocellular
carcinoma (HCC), is largely unknown. As with most other human cancers, the heterogeneous
nature of HCC has hampered both treatment and prognostic predictions. Global gene
expression profiling of human cancers is a promising new technology for refining the
diagnosis and prognosis of HCC as well as for identifying potential therapeutic targets.
Improved molecular characterization of HCC from gene expression profiling studies
will undoubtedly improve the prediction of treatment responses, improve the selection
of treatments for specific molecular subtypes of HCC, and ultimately improve the clinical
outcome of HCC patients. We review the recent advances in gene expression profiling
of HCC and discuss the biological and clinical insights obtained from these studies.
KEYWORDS
Hepatocellular carcinoma (HCC) - DNA microarray - gene expression profile - comparative
functional genomics
REFERENCES
1
Bruix J, Boix L, Sala M, Llovet J M.
Focus on hepatocellular carcinoma.
Cancer Cell.
2004;
5
215-219
2
Llovet J M, Burroughs A, Bruix J.
Hepatocellular carcinoma.
Lancet.
2003;
362
1907-1917
3
Thorgeirsson S S, Grisham J W.
Molecular pathogenesis of human hepatocellular carcinoma.
Nat Genet.
2002;
31
339-346
4
Lee J S, Thorgeirsson S S.
Genome-scale profiling of gene expression in hepatocellular carcinoma: classification,
survival prediction, and identification of therapeutic targets.
Gastroenterology.
2004;
127
S51-S55
5
Ramaswamy S.
Translating cancer genomics into clinical oncology.
N Engl J Med.
2004;
350
1814-1816
6
Alizadeh A A, Eisen M B, Davis R E et al..
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature.
2000;
403
503-511
7
Beer D G, Kardia S L, Huang C C et al..
Gene-expression profiles predict survival of patients with lung adenocarcinoma.
Nat Med.
2002;
8
816-824
8
Bittner M, Meltzer P, Chen Y et al..
Molecular classification of cutaneous malignant melanoma by gene expression profiling.
Nature.
2000;
406
536-540
9
Roepman P, Wessels L F, Kettelarij N et al..
An expression profile for diagnosis of lymph node metastases from primary head and
neck squamous cell carcinomas.
Nat Genet.
2005;
37
182-186
10
Valk P J, Verhaak R G, Beijen M A et al..
Prognostically useful gene-expression profiles in acute myeloid leukemia.
N Engl J Med.
2004;
350
1617-1628
11
van't Veer L J, Dai H, van de Vijver M J et al..
Gene expression profiling predicts clinical outcome of breast cancer.
Nature.
2002;
415
530-536
12
Heller M J.
DNA microarray technology: devices, systems, and applications.
Annu Rev Biomed Eng.
2002;
4
129-153
, Epub; 2002 Mar 22:129-153
13
Liang P, Pardee A B.
Analysing differential gene expression in cancer.
Nat Rev Cancer.
2003;
3
869-876
14
Liang P, Pardee A B.
Differential display of eukaryotic messenger RNA by means of the polymerase chain
reaction.
Science.
1992;
257
967-971
15
Diatchenko L, Lau Y F, Campbell A P et al..
Suppression subtractive hybridization: a method for generating differentially regulated
or tissue-specific cDNA probes and libraries.
Proc Natl Acad Sci USA.
1996;
93
6025-6030
16
Lisitsyn N, Lisitsyn N, Wigler M.
Cloning the differences between two complex genomes.
Science.
1993;
259
946-951
17
Velculescu V E, Zhang L, Vogelstein B, Kinzler K W.
Serial analysis of gene expression.
Science.
1995;
270
484-487
18
Schena M, Shalon D, Davis R W, Brown P O.
Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Science.
1995;
270
467-470
19
Brenner S, Johnson M, Bridgham J et al..
Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead
arrays.
Nat Biotechnol.
2000;
18
630-634
20
Bruix J, Llovet J M.
HCC surveillance: who is the target population?.
Hepatology.
2003;
37
507-509
21
Calvet X, Bruix J, Gines P et al..
Prognostic factors of hepatocellular carcinoma in the west: a multivariate analysis
in 206 patients.
Hepatology.
1990;
12
753-760
22
Chevret S, Trinchet J C, Mathieu D et al..
A new prognostic classification for predicting survival in patients with hepatocellular
carcinoma. Groupe d'Etude et de Traitement du Carcinome Hepatocellulaire.
J Hepatol.
1999;
31
133-141
23
Okuda K, Ohtsuki T, Obata H et al..
Natural history of hepatocellular carcinoma and prognosis in relation to treatment.
Study of 850 patients.
Cancer.
1985;
56
918-928
24
Pugh R N, Murray-Lyon I M, Dawson J L et al..
Transection of the oesophagus for bleeding oesophageal varices.
Br J Surg.
1973;
60
646-649
25
Tan C K, Law N M, Ng H S, Machin D.
Simple clinical prognostic model for hepatocellular carcinoma in developing countries
and its validation.
J Clin Oncol.
2003;
21
2294-2298
26
CLIP investigators .
A new prognostic system for hepatocellular carcinoma: a retrospective study of 435
patients: the Cancer of the Liver Italian Program (CLIP) investigators.
Hepatology.
1998;
28
751-755
27
Chen X, Cheung S T, So S et al..
Gene expression patterns in human liver cancers.
Mol Biol Cell.
2002;
13
1929-1939
28
Kim B Y, Lee J G, Park S et al..
Feature genes of hepatitis B virus-positive hepatocellular carcinoma, established
by its molecular discrimination approach using prediction analysis of microarray.
Biochim Biophys Acta.
2004;
1739
50-61
29
Neo S Y, Leow C K, Vega V B et al..
Identification of discriminators of hepatoma by gene expression profiling using a
minimal dataset approach.
Hepatology.
2004;
39
944-953
30
Xu X R, Huang J, Xu Z G et al..
Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene
expression profiles of hepatocellular carcinoma with those of corresponding noncancerous
liver.
Proc Natl Acad Sci USA.
2001;
98
15089-15094
31
Anders R A, Yerian L M, Tretiakova M et al..
cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage
hepatitis C virus-induced cirrhosis.
Am J Pathol.
2003;
162
991-1000
32
Delpuech O, Trabut J B, Carnot F et al..
Identification, using cDNA macroarray analysis, of distinct gene expression profiles
associated with pathological and virological features of hepatocellular carcinoma.
Oncogene.
2002;
21
2926-2937
33
Iizuka N, Oka M, Yamada-Okabe H et al..
Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular
carcinoma after curative resection.
Lancet.
2003;
361
923-929
34
Lee J S, Thorgeirsson S S.
Functional and genomic implications of global gene expression profiles in cell lines
from human hepatocellular cancer.
Hepatology.
2002;
35
1134-1143
35
Okabe H, Satoh S, Kato T et al..
Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA
microarray: identification of genes involved in viral carcinogenesis and tumor progression.
Cancer Res.
2001;
61
2129-2137
36
Paradis V, Bieche I, Dargere D et al..
Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time
RT-PCR approach: determination of a molecular diagnostic index.
Am J Pathol.
2003;
163
733-741
37
Smith M W, Yue Z N, Korth M J et al..
Hepatitis C virus and liver disease: global transcriptional profiling and identification
of potential markers.
Hepatology.
2003;
38
1458-1467
38
Smith M W, Yue Z N, Geiss G K et al..
Identification of novel tumor markers in hepatitis C virus-associated hepatocellular
carcinoma.
Cancer Res.
2003;
63
859-864
39
Ye Q H, Qin L X, Forgues M et al..
Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene
expression profiling and supervised machine learning.
Nat Med.
2003;
9
416-423
40
Lee J S, Chu I S, Heo J et al..
Classification and prediction of survival in hepatocellular carcinoma by gene expression
profiling.
Hepatology.
2004;
40
667-676
41
Van Dyke T, Jacks T.
Cancer modeling in the modern era: progress and challenges.
Cell.
2002;
108
135-144
42
Klausner R D.
Studying cancer in the mouse.
Oncogene.
1999;
18
5249-5252
43
Ellwood-Yen K, Graeber T G, Wongvipat J et al..
Myc-driven murine prostate cancer shares molecular features with human prostate tumors.
Cancer Cell.
2003;
4
223-238
44
Lee J S, Chu I S, Mikaelyan A et al..
Application of comparative functional genomics to identify best-fit mouse models to
study human cancer.
Nat Genet.
2004;
36
1306-1311
45
Sweet-Cordero A, Mukherjee S, Subramanian A et al..
An oncogenic KRAS2 expression signature identified by cross-species gene-expression
analysis.
Nat Genet.
2005;
37
48-55
46
Wistuba I I, Gazdar A F, Minna J D.
Molecular genetics of small cell lung carcinoma.
Semin Oncol.
2001;
28
3-13
47
Beer D G, Kardia S L, Huang C C et al..
Gene-expression profiles predict survival of patients with lung adenocarcinoma.
Nat Med.
2002;
8
816-824
48
Fan C Y, Pan J, Usuda N et al..
Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking
peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated
receptor alpha natural ligand metabolism.
J Biol Chem.
1998;
273
15639-15645
49
Rao M S, Lalwani N D, Watanabe T K, Reddy J K.
Inhibitory effect of antioxidants ethoxyquin and 2(3)-tert-butyl-4-hydroxyanisole
on hepatic tumorigenesis in rats fed ciprofibrate, a peroxisome proliferator.
Cancer Res.
1984;
44
1072-1076
50
Reddy J K, Lalwai N D.
Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic
drugs and industrial plasticizers to humans.
Crit Rev Toxicol.
1983;
12
1-58
51
Gonzalez F J, Peters J M, Cattley R C.
Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome
proliferator-activator receptor alpha.
J Natl Cancer Inst.
1998;
90
1702-1709
52
Calvisi D F, Factor V M, Ladu S, Conner E A, Thorgeirsson S S.
Disruption of β-catenin pathway or genomic instability define two distinct categories
of liver cancer in transgenic mice.
Gastroenterology.
2004;
126
1374-1386
53
Sargent L M, Zhou X, Keck C L et al..
Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice
overexpressing c-Myc and transforming growth factor-alpha in the liver.
Am J Pathol.
1999;
154
1047-1055
54
Calvisi D F, Factor V M, Loi R, Thorgeirsson S S.
Activation of β-catenin during hepatocarcinogenesis in transgenic mouse models: relationship
to phenotype and tumor grade.
Cancer Res.
2001;
61
2085-2091
55
Hsu H C, Jeng Y M, Mao T L et al..
β-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma
negative for hepatitis B virus and with favorable prognosis.
Am J Pathol.
2000;
157
763-770
56
Mao T L, Chu J S, Jeng Y M et al..
Expression of mutant nuclear β-catenin correlates with non-invasive hepatocellular
carcinoma, absence of portal vein spread, and good prognosis.
J Pathol.
2001;
193
95-101
57
Wong C M, Fan S T, Ng I O.
β-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic
and prognostic significance.
Cancer.
2001;
92
136-145
58
Laurent-Puig P, Legoix P, Bluteau O et al..
Genetic alterations associated with hepatocellular carcinomas define distinct pathways
of hepatocarcinogenesis.
Gastroenterology.
2001;
120
1763-1773
59
Yarden Y, Sliwkowski M X.
Untangling the ErbB signalling network.
Nat Rev Mol Cell Biol.
2001;
2
127-137
60
Cohen M H, Williams G A, Sridhara R et al..
United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839,
Iressa) tablets.
Clin Cancer Res.
2004;
10
1212-1218
61
Kitano H.
Cancer robustness: tumour tactics.
Nature.
2003;
426
125
62
McNeil C.
Herceptin raises its sights beyond advanced breast cancer.
J Natl Cancer Inst.
1998;
90
882-883
63
le Coutre P, Mologni L, Cleris L et al..
In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor.
J Natl Cancer Inst.
1999;
91
163-168
64
Paez J G, Janne P A, Lee J C et al..
EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.
Science.
2004;
304
1497-1500
65
Lynch T J, Bell D W, Sordella R et al..
Activating mutations in the epidermal growth factor receptor underlying responsiveness
of non-small-cell lung cancer to gefitinib.
N Engl J Med.
2004;
350
2129-2139
Snorri S ThorgeirssonM.D. Ph.D.
Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer
Institute
National Institutes of Health, 37 Convent Drive, Building 37
Room 4146, Bethesda, MD 20892-4262
Email: snorri_thorgeirsson@nih.gov