References
<A NAME="RG17405ST-1A">1a</A>
Larrow JF.
Jacobsen EN.
Top. Organomet. Chem.
2004,
6:
123
<A NAME="RG17405ST-1B">1b</A>
Cozzi PG.
Chem. Soc. Rev.
2004,
33:
410
<A NAME="RG17405ST-2">2</A>
Martínez LE.
Leighton JL.
Carsten DH.
Jacobsen EN.
J. Am. Chem. Soc.
1995,
117:
5897
<A NAME="RG17405ST-3A">3a</A>
Schaus SE.
Brånalt J.
Jacobsen EN.
J. Org. Chem.
1998,
63:
403
<A NAME="RG17405ST-3B">3b</A>
Huang Y.
Iwama T.
Rawal VH.
J. Am. Chem. Soc.
2000,
122:
784
<A NAME="RG17405ST-4">4</A>
Leighton JL.
Jacobsen EN.
J. Org. Chem.
1996,
61:
389
<A NAME="RG17405ST-5">5</A>
McGarrigle EM.
Gilheany DG.
Chem. Rev.
2005,
105:
1563
<A NAME="RG17405ST-6">6</A>
Doyle AG.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
62
<A NAME="RG17405ST-7A">7a</A>
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
1999,
38:
3357
<A NAME="RG17405ST-7B">7b</A>
Bandini M.
Cozzi PG.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
2000,
39:
2327
<A NAME="RG17405ST-7C">7c</A>
Bandini M.
Cozzi PG.
Umani-Ronchi A.
Tetrahedron
2001,
57:
835
<A NAME="RG17405ST-7D">7d</A>
Berkessel A.
Menche D.
Sklorz CA.
Schröder M.
Paterson I.
Angew. Chem. Int. Ed.
2003,
42:
1032
<A NAME="RG17405ST-8">8</A> For a review of applications of(salen)Cr complexes in asymmetric catalysis see:
Bandini M.
Cozzi PG.
Umani-Ronchi A.
Chem. Commun.
2002,
919
<A NAME="RG17405ST-9">9</A> For a recent review on enantioselective allylation, see:
Denmark SE.
Fu J.
Chem. Rev.
2003,
103:
2763
<A NAME="RG17405ST-10A">10a</A>
Costa AL.
Piazza MG.
Tagliavini E.
Trombini C.
Umani-Ronchi A.
J. Am. Chem. Soc.
1993,
115:
7001
<A NAME="RG17405ST-10B">10b</A>
Keck GE.
Tarbet KH.
Geraci LS.
J. Am. Chem. Soc.
1993,
115:
8467
<A NAME="RG17405ST-11A">11a</A>
Bedeschi P.
Casolari S.
Costa AL.
Tagliavini E.
Umani-Ronchi A.
Tetrahedron Lett.
1995,
36:
7897
<A NAME="RG17405ST-11B">11b</A>
Casolari S.
Cozzi PG.
Orioli PA.
Tagliavini E.
Umani-Ronchi A.
Chem. Commun.
1997,
2123
<A NAME="RG17405ST-11C">11c</A>
Hanawa H.
Kii S.
Asao N.
Maruoka K.
Tetrahedron Lett.
2000,
41:
5543
<A NAME="RG17405ST-12">12</A>
Yanagisawa A.
Nakashima H.
Ishiba A.
Yamamoto H.
J. Am. Chem. Soc.
1996,
118:
4723
<A NAME="RG17405ST-13">13</A>
Furuta K.
Mouri M.
Yamamoto H.
Synlett
1991,
561
<A NAME="RG17405ST-14">14</A>
Kwiatkowski P.
Jurczak J.
Synlett
2005,
227
<A NAME="RG17405ST-15">15</A>
Kwiatkowski P.
Chaladaj W.
Jurczak J.
Tetrahedron Lett.
2004,
45:
5343
<A NAME="RG17405ST-16A">16a</A>
High Pressure Chemistry
Eldik R.
Klarner F.-G.
Wiley;
New York:
2002.
<A NAME="RG17405ST-16B">16b</A>
Chemistry under Extreme or Non-Clasical Conditions
van Eldik R.
Hubbard CD.
Wiley;
New York:
1997.
<A NAME="RG17405ST-16C">16c</A>
Organic Synthesis at High Pressure
Matsumato K.
Acheson RM.
Wiley;
New York:
1991.
<A NAME="RG17405ST-16D">16d</A>
High Pressure Chemical Synthesis
Jurczak J.
Baranowski B.
Elsevier;
New York:
1989.
<A NAME="RG17405ST-17">17</A>
Yamamoto Y.
Maruyama K.
Matsumoto K.
J. Chem. Soc., Chem. Commun.
1983,
489
<A NAME="RG17405ST-18A">18a</A>
Irie R.
Noda K.
Ito Y.
Matsumoto N.
Katsuki T.
Tetrahedron Lett.
1990,
31:
7345
<A NAME="RG17405ST-18B">18b</A>
Hosoya N.
Irie R.
Katsuki T.
Synlett
1993,
261
<A NAME="RG17405ST-19A">19a</A>
Sasaki T.
Irie R.
Hamada T.
Suzuki K.
Katsuki T.
Tetrahedron
1994,
50:
11827
<A NAME="RG17405ST-19B">19b</A>
Ito YN.
Katsuki T.
Bull. Chem. Soc. Jpn.
1999,
72:
603
<A NAME="RG17405ST-20">20</A>
Zhang W.
Jacobsen EN.
J. Org. Chem.
1991,
56:
2296
<A NAME="RG17405ST-21">21</A>
Pietikäinen P.
Tetrahedron
2000,
56:
417
<A NAME="RG17405ST-22A">22a</A>
Casiraghi G.
Casnati G.
Puglia G.
Sartori G.
Terenghi G.
J. Chem. Soc., Perkin Trans. 1
1980,
1862
<A NAME="RG17405ST-22B">22b</A>
Deng L.
Jacobsen EN.
J. Org. Chem.
1992,
57:
4320
<A NAME="RG17405ST-23">23</A>
Larrow JF.
Jacobsen EN.
J. Org. Chem.
1994,
59:
1939
<A NAME="RG17405ST-24">24</A>
Analytical data for the modified salen ligand (1R,2R)-7: mp 89-93 °C; [α]D
29 -329.5 (c 1.0, CHCl3); IR (KBr): 2963, 2875, 1628, 1597, 1445, 1263, 699 cm-1; 1H NMR (200 MHz, CDCl3): δ = 13.13 (s, OH, 2 H), 8.00 (s, CHN, 2 H), 7.45 (d, J = 1.8 Hz, 2 H), 7.25-7.09 (m, 10 H), 6.92 (d, J = 1.8 Hz, 2 H), 3.13-2.99 (m, 2 H), 2.50-2.25 (m, 4 H), 2.12-1.94 (m, 4 H), 1.86-1.69
(m, 4 H), 1.66-1.44 (m, 2 H), 1.30 (s, 18 H), 0.60 (t, J = 7.2 Hz, 6 H), 0.53 (t, J = 7.2 Hz, 6 H); 13C NMR (50 MHz, CDCl3): δ = 165.5 (2 × CHN), 157.5 (2 × C), 148.5 (2 × C), 139.2 (2 × C), 133.1 (2 × C),
129.2 (2 × CH), 127.2 (4 × CH), 127.0 (4 × CH), 125.8 (2 × CH), 124.7 (2 × CH), 117.5
(2 × C), 72.3 (2 × CH), 49.0 (2 × C), 34.0 (2 × C), 32.9 (2 × CH2), 31.5 (6 × CH3), 28.0 (2 × CH2), 27.1 (2 × CH2), 24.3 (2 × CH2), 8.7 (4 × CH3); Anal. Calcd for C50H66N2O2: C, 82.60; H, 9.15; N, 3.85. Found: C, 82.55; H, 9.23; N, 3.83; HRMS: [M + Na]+ calcd for C50H66N2O2Na: 749.5022, found: 749.5021.
<A NAME="RG17405ST-25">25</A>
Analytical data for the complex (1R,2R)-8: [α]D
29 -1420
(c 0.01, CHCl3); IR (KBr): 3429, 2961, 2873, 1622, 1533, 1437, 1258, 700, 546 cm-1; HRMS: [M - Cl]+ calcd for C50H64N2O2Cr: 776.4373, found: 776.4392.
<A NAME="RG17405ST-26">26</A>
General Procedure for High-Pressure Allylation: In a 2-mL Teflon ampoule were placed catalyst 1g (8.7 mg, 1 mol%), CH2Cl2 (ca. 1 mL), followed by aldehyde (1 mmol) and allyltributyltin (1.1-1.2 equiv). Finally,
the ampoule was filled with CH2Cl2, closed and placed in a high-pressure vessel, and the pressure was slowly increased
to 10 kbar at 20 °C. After the pressure had stabilized, the reaction mixture was kept
under these conditions for 24 h. After decompression, the reaction mixture was diluted
with wet Et2O and dried over MgSO4. After evaporation of solvents, the residue was chromatographed on a silica gel column
(hexane-EtOAc).
<A NAME="RG17405ST-27">27</A>
The enantioselectivity of homoallylic alcohols 3a-f was determined by GC employing a capillary chiral β-dex 120 column. Alcohol 3f was analyzed directly, 3a, 3c and 3d as their O-trimethylsilyl derivatives, 3b as an acetate and 3e as a trifluoroacetate.