Int J Sports Med 2006; 27(9): 730-737
DOI: 10.1055/s-2005-872910
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Oxygen Uptake Efficiency Slope in Coronary Artery Disease: Clinical Use and Response to Training

J. Defoor1 , D. Schepers1 , T. Reybrouck1 , R. Fagard2 , L. Vanhees1 , 2
  • 1Cardiovascular Rehabilitation Unit, Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, University of Leuven, Leuven, Belgium
  • 2Hypertension and Cardiovascular Rehabilitation Unit, Cardiology Unit, Department of Molecular and Cardiovascular Research, Faculty of Medicine, K. U. Leuven, University of Leuven, Leuven, Belgium
Further Information

Publication History

Accepted after revision: August 30, 2005

Publication Date:
24 November 2005 (online)

Abstract

The Oxygen Uptake Efficiency Slope (OUES), a new parameter derived from respiratory gas analysis, has been suggested as a submaximal index of cardiopulmonary functional reserve. We evaluated the clinical application and the effect of physical training on the OUES in patients with coronary artery disease (CAD). Maximal cycle-ergometer testing with respiratory gas analysis (breath-by-breath) was performed in 590 patients with CAD and again after three months of physical training in 425 patients. OUES was determined from the linear relation of oxygen uptake (V·O2) vs. the logarithm of pulmonary ventilation (VE) during exercise, i.e. V·O2 = a log10 VE + b, where a is the OUES. The ventilatory anaerobic threshold (VAT) and the slope of the relation of VE ν carbon dioxide production (V·CO2) (VE-V·CO2 slope) were also determined. Correlation coefficients of the relation from which OUES was derived in individuals averaged 0.975 ± 0.024 (mean ± SD) when calculated from data up to a respiratory gas exchange ratio of 1.0. Submaximal OUES was marginally lower (5.4 ± 7.9 %, p < 0.05) than the OUES calculated from 100 % of respiratory exercise data. Of all submaximal parameters, submaximal OUES (r = 0.837, p < 0.001) and VAT (r = 0.860, p < 0.001) correlated best with peak V·O2, followed by VE-V·CO2 slope (r = - 0.469, p < 0.001). OUES was lower in patients who underwent coronary artery bypass grafting as compared with patients after coronary angioplasty (p < 0.05). Peak V·O2 and OUES increased significantly (p < 0.001) after training with 24 ± 19.2 % and 20.9 ± 19.3 %, respectively. Changes in peak V·O2 correlated better with changes in OUES and in VAT (r = 0.61 and r = 0.55, p < 0.001, respectively) than with changes in VE-V·CO2 slope (r = - 0.171, p < 0.001). The submaximal OUES is clinically useful for the quantification of exercise performance and is sensitive to physical training in patients with CAD.

References

  • 1 Ades P A. Cardiac rehabilitation and secondary prevention of coronary heart disease.  N Engl J Med. 2001;  345 892-902
  • 2 Allen J K, Fitzgerald S T, Swank R T, Becker D M. Functional status after coronary artery bypass grafting and percutaneous transluminal coronary angioplasty.  Am J Cardiol. 1990;  66 921-925
  • 3 Arena R, Humphrey R. Comparison of ventilatory expired gas parameters used to predict hospitalization in patients with heart failure.  Am Heart J. 2002;  143 427-432
  • 4 Baba R, Kubo N, Morotome Y, Iwagaki S. Reproducibility of the oxygen uptake efficiency slope in normal healthy subjects.  J Sports Med Phys Fitness. 1999;  39 202-206
  • 5 Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, Nishibata K. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise.  J Am Coll Cardiol. 1996;  28 1567-1572
  • 6 Baba R, Nagashima M, Nagano Y, Ikoma M, Nishibata K. Role of the oxygen uptake efficiency slope in evaluating exercise tolerance.  Arch Dis Child. 1999;  81 73-75
  • 7 Baba R, Tsuyuki K, Kimura Y, Ninomiya K, Aihara M, Ebine K, Tauchi N, Nishibata K, Nagashima M. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory functional reserve in adult cardiac patients.  Eur J Appl Physiol. 1999;  80 397-401
  • 8 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 9 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 10 Chua T P, Ponikowski P, Harrington D, Anker S D, Webb-Peploe K, Clark A L, Poole-Wilson P A, Coats A J. Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure.  J Am Coll Cardiol. 1997;  29 1585-1590
  • 11 Clark A L, Skypala I, Coats A J. Ventilatory efficiency is unchanged after physical training in healthy persons despite an increase exercise tolerance.  J Cardiovasc Risk. 1994;  1 347-351
  • 12 Clark A L, Swan J W, Laney R, Connelly M, Somerville J, Coats A J. The role of right and left ventricular function in the ventilatory response to exercise in chronic heart failure.  Circulation. 1994;  89 2062-2069
  • 13 Coats A J, Adamopoulos S, Radaelli A, McCance A, Meyer T E, Bernardi L, Solda P L, Davey P, Ormerod O, Forfar C. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function.  Circulation. 1992;  85 2119-2131
  • 14 Davey P, Meyer T, Coats A, Adamopoulos S, Casadei B, Conway J, Sleight P. Ventilation in chronic heart failure: effects of physical training.  Br Heart J. 1992;  68 473-477
  • 15 Duncan G E, Howley E T, Johnson B N. Applicability of V·O2max criteria: discontinuous versus continuous protocols.  Med Sci Sports Exerc. 1997;  29 273-278
  • 16 Francis D P, Shamim W, Davies L C, Piepoli M F, Ponikowski P, Anker S D, Coats A J. Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2).  Eur Heart J. 2000;  21 154-161
  • 17 Gibbons R J, Balady G J, Beasley J W, Bricker J T, Duvernoy W F, Froelicher V F, Mark D B, Marwick T H, McCallister B D, Thompson Jr P D, Winters W L, Yanowitz F G, Ritchie J L, Gibbons R J, Cheitlin M D, Eagle K A, Gardner T J, Garson Jr A, Lewis R P, O'Rourke R A, Ryan T J. ACC/AHA Guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Exercise Testing).  J Am Coll Cardiol. 1997;  30 260-311
  • 18 Gladden L B, Yates J W, Stremel R W, Stamford B A. Gas exchange and lactate anaerobic thresholds: inter- and intraevaluator agreement.  J Appl Physiol. 1985;  58 2082-2089
  • 19 Hollenberg M, Tager I B. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise.  J Am Coll Cardiol. 2000;  36 194-201
  • 20 Kavanagh T, Mertens D J, Hamm L F, Beyene J, Kennedy J, Corey P, Shephard R J. Prediction of long-term prognosis in 12 169 men referred for cardiac rehabilitation.  Circulation. 2002;  106 666-671
  • 21 Kleber F X, Vietzke G, Wernecke K D, Bauer U, Opitz C, Wensel R, Sperfeld A, Glaser S. Impairment of ventilatory efficiency in heart failure: prognostic impact.  Circulation. 2000;  101 2803-2809
  • 22 Lan C, Chen S Y, Hsu C J, Chiu S F, Lai J S. Improvement of cardiorespiratory function after percutaneous transluminal coronary angioplasty or coronary artery bypass grafting.  Am J Phys Med Rehabil. 2002;  81 336-341
  • 23 Marinov B, Kostianev S. Exercise performance and oxygen uptake efficiency slope in obese children performing standardized exercise.  Acta Physiol Pharmacol Bulg. 2003;  27 59-64
  • 24 Metra M, Dei C L, Panina G, Visioli O. Exercise hyperventilation chronic congestive heart failure, and its relation to functional capacity and hemodynamics.  Am J Cardiol. 1992;  70 622-628
  • 25 Mourot L, Perrey S, Tordi N, Rouillon J D. Evaluation of fitness level by the oxygen uptake efficiency slope after a short-term intermittent endurance training.  Int J Sports Med. 2004;  25 85-91
  • 26 Pardaens K, Van Cleemput J, Vanhaecke J, Fagard R H. Atrial fibrillation is associated with a lower exercise capacity in male chronic heart failure patients.  Heart. 1997;  78 564-568
  • 27 Pichon A, Jonville S, Denjean A. Evaluation of the interchangeability of V·O2max and oxygen uptake efficiency slope.  Can J Appl Physiol. 2002;  27 589-601
  • 28 Shimizu M, Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Froelicher V F. The ventilatory threshold: method, protocol, and evaluator agreement.  Am Heart J. 1991;  122 509-516
  • 29 Sun X G, Hansen J E, Garatachea N, Storer T W, Wasserman K. Ventilatory efficiency during exercise in healthy subjects.  Am J Respir Crit Care Med. 2002;  166 1443-1448
  • 30 Tomita T, Takaki H, Hara Y, Sakamaki F, Satoh T, Takagi S, Yasumura Y, Aihara N, Goto Y, Sunagawa K. Attenuation of hypercapnic carbon dioxide chemosensitivity after postinfarction exercise training: possible contribution to the improvement in exercise hyperventilation.  Heart. 2003;  89 404-410
  • 31 Tsuyuki K, Kimura Y, Chiashi K, Matsushita C, Ninomiya K, Choh K, Hase H, Dohi S. Oxygen uptake efficiency slope as monitoring tool for physical training in chronic hemodialysis patients.  Ther Apher Dial. 2003;  7 461-467
  • 32 Ueshima K, Myers J, Ribisl P M, Atwood J E, Morris C K, Kawaguchi T, Liu J, Froelicher V F. Hemodynamic determinants of exercise capacity in chronic atrial fibrillation.  Am Heart J. 1993;  125 1301-1305
  • 33 Van Laethem C, Bartunek J, Goethals M, Nellens P, Andries E, Vanderheyden M. Oxygen uptake efficiency slope, a new submaximal parameter in evaluating exercise capacity in chronic heart failure patients.  Am Heart J. 2005;  149 175-180
  • 34 Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease.  J Am Coll Cardiol. 1994;  23 358-363
  • 35 Vanhees L, Schepers D, Defoor J, Brusselle S, Tchursh N, Fagard R. Exercise performance and training in cardiac patients with atrial fibrillation.  J Cardiopulm Rehabil. 2000;  20 346-352
  • 36 Vanhees L, Stevens A, Schepers D, Defoor J, Rademakers F, Fagard R. Determinants of the effects of physical training and of the complications requiring resuscitation during exercise in patients with cardiovascular disease.  Eur J Cardiovasc Prev Rehabil. 2004;  11 304-312
  • 37 Wasserman K, Hansen J, Sue D, Whipp B. Physiology of Exercise. Philadelphia; Lea and Febiger 1999: 10-61
  • 38 Wasserman K, Whipp B J, Koyl S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 39 Yeh M P, Gardner R M, Adams T D, Yanowitz F G, Crapo R O. “Anaerobic threshold”: problems of determination and validation.  J Appl Physiol. 1983;  55 1178-1186

L. Vanhees

Head Department Rehabilitation Sciences

Tervuursevest 101

3000 Leuven

Belgium

Phone: + 3216329005

Fax: + 32 16 32 91 97

Email: Luc.vanhees@faber.kuleuven.be

    >