Fortschr Neurol Psychiatr 2005; 73: 51-59
DOI: 10.1055/s-2005-915581
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

NeuroImaging bei schizophrenen Erkrankungen

Neuroimaging in SchizophreniaR.  Lanzenberger1 , S.  Kasper1
  • 1Klinische Abteilung für Allgemeine Psychiatrie, Medizinische Universität Wien/Österreich
Further Information

Publication History

Publication Date:
04 November 2005 (online)

Zusammenfassung

Der Schwerpunkt dieser Übersichtsarbeit liegt in der funktionellen Bildgebung mit der funktionellen Magnetresonanztomographie (FMRT), Positronenemissionstomographie (PET) und SPECT. Neue die „Dopaminhypothese der Schizophrenie” stützende Hinweise werden zusammengefasst, einschließlich Veränderungen des präsynaptischen dopaminergen Metabolismus und des postsynaptischen Rezeptorbindungspotentials. Resultate von dopaminergen Provokationsstudien mit Amphetamin und AMPT werden dargestellt. Mehrere PET und SPECT-Studien zeigten einen deutlichen Anstieg der Amphetamin-induzierten Dopaminausschüttung und der AMPT-induzierten Dopamindepletion in medikamenten-naiven Patienten und weisen auf eine Dysregulation der dopaminergen Neurotransmission hin. Provokationsstudien mit Amphetamin und dem NMDA-Rezeptor-Antagonisten Ketamin werden zu der glutaminergen Dysfunktion und der Wechselwirkung mehrerer Neurotransmitter in Beziehung gesetzt. Die aufgabenspezifische funktionelle Konnektivität gemessen mit fMRT und PET wird unter besonderer Berücksichtung des präfrontalen Kortex und temporaler Strukturen diskutiert. Ein Anstieg des Serotonin-1A-Rezeptorbindungspotenzials im präfrontalen und mesotemporalen Kortex wird auf die Interaktion zwischen dopaminergem und serotonergem System bezogen. Genetisches Neuroimaging mit Voxel-basierter Morphometrie (VBM) und fMRT zeigte signifikante Effekte des Dopamin-metabolisierenden Enyzms COMT auf die funktionelle Aktivität des präfrontalen Kortex. Funktionelles Neuroimaging basierend auf Provokationsparadigmen im PET als auch auf aufgabenspezifischen Veränderungen der fMRT-Aktivierungsmuster scheint ein vielversprechender Kandidat für die Entwicklung von biologischen Markertests für schizophrene Erkrankungen zu sein.

Abstract

This overview is focused on functional neuroimaging including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and single photon emission computed tomography (SPECT). Recent evidence for the “dopamine hypothesis of schizophrenia” is summarized including alterations of presynaptic dopamine metabolism and postsynaptic receptor binding potential. Emphasis is given to dopaminergic challenge studies using amphetamine and AMPT. Several PET and SPECT studies have shown a pronounced increase of amphetamine-induced dopamine release as well as decrease of AMPT-induced dopamine depletion in drug-naive schizophrenic patients, indicating a dysregulation of dopaminergic neurotransmission. Results of studies combining amphetamine challenge and the NMDA receptor antagonist ketamine are related to glutaminergic dysfunction and neurotransmitter interactions. FMRI and PET results demonstrating alterations in task-specific functional connectivity between brain areas are discussed with a focus on the prefrontal cortex and temporal structures. Increase of serotonin-1A receptor binding potential in prefrontal and mesotemporal cortex is related to the serotonin-dopamine interaction. Genetic neuroimaging techniques, including voxel-based morphometry (VBM) and fMRI, revealing significant effects of the dopamine metabolizing enzyme COMT on functional activation in prefrontal areas are also discussed. Functional neuroimaging based on challenge-paradigms in PET as well as task-specific state- or trait-dependent alterations of activation patterns in fMRI, seems to be a promising candidate for the development of biological marker tests for schizophrenia.

Literatur

  • 1 Olsson H, Halldin C, Farde L. Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET.  Neuroimage. 2004;  22 (2) 794-803
  • 2 Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia.  Am J Psychiatry. 1996;  153 (4) 466-476
  • 3 Kapur S, Lecrubier Y. Dopamine in the Pathophysiology and Treatment of Schizophrenia. London: Taylor & Francis Group 2003
  • 4 Abi-Dargham A. Do we still believe in the dopamine hypothesis? New data bring new evidence.  Int J Neuropsychopharmacol. 2004;  7 Suppl 1 S1-5
  • 5 Heinz A. [The dopamine hypothesis of schizophrenia. New findings for an old theory].  Nervenarzt. 2000;  71 (1) 54-57
  • 6 Garris P A, Wightman R M. Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study.  J Neurosci. 1994;  14 (1) 442-450
  • 7 Heinz A, Saunders R C, Kolachana B S, Jones D W, Gorey J G, Bachevalier J, Weinberger D R. Striatal dopamine receptors and transporters in monkeys with neonatal temporal limbic damage.  Synapse. 1999;  32 (2) 71-79
  • 8 Heinz A, Braus D F, Romero B, Gallinat J, Puls I, Juckel G, Weinberger D R. [Genetic and pharmacological effects on prefrontal cortical function in schizophrenia].  Nervenarzt. 2004;  75 (9) 845-856
  • 9 Schmitt A, Weber-Fahr W, Jatzko A, Tost H, Henn F A, Braus D F. [Current overview of structural magnetic resonance imaging in schizophrenia].  Fortschr Neurol Psychiatr. 2001;  69 (3) 105-115
  • 10 Scherk H, Falkai P. [Changes in brain structure caused by neuroleptic medication].  Nervenarzt. 2004;  75 (11) 1112-1117
  • 11 Brassen S, Tost H, Hoehn F, Weber-Fahr W, Klein S, Braus D F. Haloperidol challenge in healthy male humans: a functional magnetic resonance imaging study.  Neurosci Lett. 2003;  340 (3) 193-196
  • 12 Braus D F, Ende G, Hubrich-Ungureanu P, Henn F A. Cortical response to motor stimulation in neuroleptic-naive first episode schizophrenics.  Psychiatry Res. 2000;  98 (3) 145-154
  • 13 Bertolino A, Blasi G, Caforio G, Latorre V, De Candia M, Rubino V, Callicott J H, Mattay V S, Bellomo A, Scarabino T, Weinberger D R, Nardini M. Functional lateralization of the sensorimotor cortex in patients with schizophrenia: effects of treatment with olanzapine.  Biol Psychiatry. 2004;  56 (3) 190-197
  • 14 Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases.  Biol Psychiatry. 1999;  46 (1) 56-72
  • 15 Laruelle M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis.  Q J Nucl Med. 1998;  42 (3) 211-221
  • 16 Wilson A A, Mccormick P, Kapur S, Willeit M, Garcia A, Hussey D, Houle S, Seeman P, Ginovart N. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9 -ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography.  J Med Chem. 2005;  48 (12) 4153-4160
  • 17 Elkashef A M, Doudet D, Bryant T, Cohen R M, Li S H, Wyatt R J. 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography.  Psychiatry Res. 2000;  100 (1) 1-11
  • 18 Verhoeff N P. Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders.  Psychopharmacology (Berl). 1999;  147 (3) 217-249
  • 19 Lindstrom L H, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P, Langstrom B. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET.  Biol Psychiatry. 1999;  46 (5) 681-688
  • 20 Gefvert O, Lindstrom L H, Waters N, Waters S, Carlsson A, Tedroff J. Different corticostriatal patterns of L-DOPA utilization in patients with untreated schizophrenia and patients treated with classical antipsychotics or clozapine.  Scand J Psychol. 2003;  44 (3) 289-292
  • 21 Copolov D, Crook J. Biological markers and schizophrenia.  Aust N Z J Psychiatry. 2000;  34 Suppl S108-112
  • 22 Kegeles L S, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann J J, Heertum R L van, Cooper T B, Carlsson A, Laruelle M. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia.  Biol Psychiatry. 2000;  48 (7) 627-640
  • 23 Laruelle M, Abi-Dargham A, Dyck C H van, Gil R, D'souza C D, Erdos J, Mccance E, Rosenblatt W, Fingado C, Zoghbi S S, Baldwin R M, Seibyl J P, Krystal J H, Charney D S, Innis R B. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.  Proc Natl Acad Sci U S A. 1996;  93 (17) 9235-9240
  • 24 Breier A, Su T P, Saunders R, Carson R E, Kolachana B S, De Bartolomeis A, Weinberger D R, Weisenfeld N, Malhotra A K, Eckelman W C, Pickar D. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.  Proc Natl Acad Sci U S A. 1997;  94 (6) 2569-2574
  • 25 Riccardi P, Ansari M S, Li R, Zald S, Park B, Dawan S, Anderson S, Doop M, Woodard E, Schoenberg D, Schmid D, Baldwin R M, Kessler R M. D-Amphetamine induced displacement of [18F]Fallypride uptake in striatal and extrastriatal regions in humans.  SNM Abstract Book Supplement. 2005;  46 (5) 204
  • 26 Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles L S, Weiss R, Cooper T B, Mann J J, Heertum R L van, Gorman J M, Laruelle M. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.  Proc Natl Acad Sci U S A. 2000;  97 (14) 8104-8109
  • 27 Verhoeff N P, Kapur S, Hussey D, Lee M, Christensen B, Psych C, Papatheodorou G, Zipursky R B. A simple method to measure baseline occupancy of neostriatal dopamine D2 receptors by dopamine in vivo in healthy subjects.  Neuropsychopharmacology. 2001;  25 (2) 213-223
  • 28 Verhoeff N P, Hussey D, Lee M, Tauscher J, Papatheodorou G, Wilson A A, Houle S, Kapur S. Dopamine depletion results in increased neostriatal D(2), but not D(1), receptor binding in humans.  Mol Psychiatry. 2002;  7 (3) 233, 322-328
  • 29 Verhoeff N P, Christensen B K, Hussey D, Lee M, Papatheodorou G, Kopala L, Rui Q, Zipursky R B, Kapur S. Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: a replication study.  Pharmacol Biochem Behav. 2003;  74 (2) 425-432
  • 30 Dolan R J, Fletcher P, Frith C D, Friston K J, Frackowiak R S, Grasby P M. Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia.  Nature. 1995;  378 (6553) 180-182
  • 31 Fletcher P C, Frith C D, Grasby P M, Friston K J, Dolan R J. Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia.  J Neurosci. 1996;  16 (21) 7055-7062
  • 32 Laruelle M, Iyer R N, Al-Tikriti M S, Zea-Ponce Y, Malison R, Zoghbi S S, Baldwin R M, Kung H F, Charney D S, Hoffer P B, Innis R B, Bradberry C W. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates.  Synapse. 1997;  25 (1) 1-14
  • 33 Kasper S, Hale A, Azorin J M, Moller H J. Benefit-risk evaluation of olanzapine, risperidone and sertindole in the treatment of schizophrenia.  Eur Arch Psychiatry Clin Neurosci. 1999;  249 Suppl 2 II1-II14
  • 34 Kasper S, Tauscher J, Kufferle B, Barnas C, Pezawas L, Quiner S. Dopamine- and serotonin-receptors in schizophrenia: results of imaging-studies and implications for pharmacotherapy in schizophrenia.  Eur Arch Psychiatry Clin Neurosci. 1999;  249 Suppl 4 83-89
  • 35 Thoma P, Daum I. [Neurocognitive changes and negative symptoms in schizophrenia].  Fortschr Neurol Psychiatr. 2005;  73 (6) 333-342
  • 36 Kasper S, Brecher M, Fitton L, Jones A M. Maintenance of long-term efficacy and safety of quetiapine in the open-label treatment of schizophrenia.  Int Clin Psychopharmacol. 2004;  19 (5) 281-289
  • 37 Kasper S, Resinger E. Cognitive effects and antipsychotic treatment.  Psychoneuroendocrinology. 2003;  28 Suppl 1 27-38
  • 38 Kasper S, Lerman M N, Mcquade R D, Saha A, Carson W H, Ali M, Archibald D, Ingenito G, Marcus R, Pigott T. Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia.  Int J Neuropsychopharmacol. 2003;  6 (4) 325-337
  • 39 Kasper S. Dopaminergic deficit and the role of amisulpride in the treatment of schizophrenia.  Int Clin Psychopharmacol. 2002;  17 Suppl 4 S19-26
  • 40 Kasper S, Tauscher J, Willeit M, Stamenkovic M, Neumeister A, Kufferle B, Barnas C, Stastny J, Praschak-Rieder N, Pezawas L, De Zwaan M, Quiner S, Pirker W, Asenbaum S, Podreka I, Brucke T. Receptor and transporter imaging studies in schizophrenia, depression, bulimia and Tourette's disorder-implications for psychopharmacology.  World J Biol Psychiatry. 2002;  3 (3) 133-146
  • 41 Tauscher J, Kufferle B, Asenbaum S, Tauscher-Wisniewski S, Kasper S. Striatal dopamine-2 receptor occupancy as measured with [123I]iodobenzamide and SPECT predicted the occurrence of EPS in patients treated with atypical antipsychotics and haloperidol.  Psychopharmacology (Berl). 2002;  162 (1) 42-49
  • 42 Meltzer H Y, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia.  Prog Neuropsychopharmacol Biol Psychiatry. 2003;  27 (7) 1159-1172
  • 43 Tauscher J, Kapur S, Verhoeff N P, Hussey D F, Daskalakis Z J, Tauscher-Wisniewski S, Wilson A A, Houle S, Kasper S, Zipursky R B. Brain serotonin 5-HT(1A) receptor binding in schizophrenia measured by positron emission tomography and [11C]WAY-100 635.  Arch Gen Psychiatry. 2002;  59 (6) 514-520
  • 44 Amargos-Bosch M, Bortolozzi A, Puig M V, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex.  Cereb Cortex. 2004;  14 (3) 281-299
  • 45 Puig M V, Artigas F, Celada P. Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA.  Cereb Cortex. 2005;  15 (1) 1-14
  • 46 Varnas K, Halldin C, Hall H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain.  Hum Brain Mapp. 2004;  22 (3) 246-260
  • 47 Abi-Dargham A, Simpson N, Kegeles L, Parsey R, Hwang D R, Anjilvel S, Zea-Ponce Y, Lombardo I, Heertum R van, Mann J J, Foged C, Halldin C, Laruelle M. PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756.  Synapse. 1999;  32 (2) 93-109
  • 48 Martin-Ruiz R, Puig M V, Celada P, Shapiro D A, Roth B L, Mengod G, Artigas F. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism.  J Neurosci. 2001;  21 (24) 9856-9866
  • 49 Wang Y, Goldman-Rakic P S. D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons.  Proc Natl Acad Sci USA. 2004; 
  • 50 Seeman P. Atypical antipsychotics: mechanism of action.  Can J Psychiatry. 2002;  47 (1) 27-38
  • 51 Meltzer H Y. The role of serotonin in antipsychotic drug action.  Neuropsychopharmacology. 1999;  21 (2 Suppl) 106S-115S
  • 52 Soares J C, Innis R B. Neurochemical brain imaging investigations of schizophrenia.  Biol Psychiatry. 1999;  46 (5) 600-615
  • 53 Duncan G E, Zorn S, Lieberman J A. Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia.  Mol Psychiatry. 1999;  4 (5) 418-428
  • 54 Ioannides A A, Poghosyan V, Dammers J, Streit M. Real-time neural activity and connectivity in healthy individuals and schizophrenia patients.  Neuroimage. 2004;  23 (2) 473-482
  • 55 Huang M X, Edgar J C, Thoma R J, Hanlon F M, Moses S N, Lee R R, Paulson K M, Weisend M P, Irwin J G, Bustillo J R, Adler L E, Miller G A, Canive J M. Predicting EEG responses using MEG sources in superior temporal gyrus reveals source asynchrony in patients with schizophrenia.  Clin Neurophysiol. 2003;  114 (5) 835-850
  • 56 Winterer G, Coppola R, Egan M F, Goldberg T E, Weinberger D R. Functional and effective frontotemporal connectivity and genetic risk for schizophrenia.  Biol Psychiatry. 2003;  54 (11) 1181-1192
  • 57 Tononi G, Edelman G M. Schizophrenia and the mechanisms of conscious integration.  Brain Res Brain Res Rev. 2000;  31 (2 - 3) 391-400
  • 58 Peled A, Geva A B, Kremen W S, Blankfeld H M, Esfandiarfard R, Nordahl T E. Functional connectivity and working memory in schizophrenia: an EEG study.  Int J Neurosci. 2001;  106 (1 - 2) 47-61
  • 59 Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C, Maier S E, Schroth G, Lovblad K, Dierks T. Pathways that make voices: white matter changes in auditory hallucinations.  Arch Gen Psychiatry. 2004;  61 (7) 658-668
  • 60 Lawrie S M, Buechel C, Whalley H C, Frith C D, Friston K J, Johnstone E C. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations.  Biol Psychiatry. 2002;  51 (12) 1008-1011
  • 61 David A S, Woodruff P W, Howard R, Mellers J D, Brammer M, Bullmore E, Wright I, Andrew C, Williams S C. Auditory hallucinations inhibit exogenous activation of auditory association cortex.  Neuroreport. 1996;  7 (4) 932-936
  • 62 Dierks T, Linden D E, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W. Activation of Heschl's gyrus during auditory hallucinations.  Neuron. 1999;  22 (3) 615-621
  • 63 Lennox B R, Park S B, Medley I, Morris P G, Jones P B. The functional anatomy of auditory hallucinations in schizophrenia.  Psychiatry Res. 2000;  100 (1) 13-20
  • 64 Bentaleb L A, Beauregard M, Liddle P, Stip E. Cerebral activity associated with auditory verbal hallucinations: a functional magnetic resonance imaging case study.  J Psychiatry Neurosci. 2002;  27 (2) 110-115
  • 65 Ven V G Van De, Formisano E, Roder C H, Prvulovic D, Bittner R A, Dietz M G, Hubl D, Dierks T, Federspiel A, Esposito F, Di Salle F, Jansma B, Goebel R, Linden D E. The spatiotemporal pattern of auditory cortical responses during verbal hallucinations.  Neuroimage. 2005; 
  • 66 Schlosser R, Wagner G, Kohler S, Sauer H. [Schizophrenia as a disconnection syndrome. Studies with functional magnetic resonance imaging and structural equation modeling].  Radiologe. 2005;  45 (2) 137-140 142-143
  • 67 Boksman K, Theberge J, Williamson P, Drost D J, Malla A, Densmore M, Takhar J, Pavlosky W, Menon R S, Neufeld R W. A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia.  Schizophr Res. 2005;  75 (2 - 3) 247-263
  • 68 Friston K J, Frith C D. Schizophrenia: a disconnection syndrome?.  Clin Neurosci. 1995;  3 (2) 89-97
  • 69 Kim J J, Ho Seok J, Park H J, Soo Lee D, Chul Lee M, Soo Kwon J. Functional disconnection of the semantic networks in schizophrenia.  Neuroreport. 2005;  16 (4) 355-359
  • 70 Meyer-Lindenberg A S, Olsen R K, Kohn P D, Brown T, Egan M F, Weinberger D R, Berman K F. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia.  Arch Gen Psychiatry. 2005;  62 (4) 379-386
  • 71 Meyer-Lindenberg A, Poline J B, Kohn P D, Holt J L, Egan M F, Weinberger D R, Berman K F. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia.  Am J Psychiatry. 2001;  158 (11) 1809-1817
  • 72 Davis C E, Jeste D V, Eyler L T. Review of longitudinal neuroimaging studies of drug treatments in patients with schizophrenia.  Schizophr Res. 2005; 
  • 73 Carlsson A, Waters N, Waters S, Carlsson M L. Network interactions in schizophrenia - therapeutic implications.  Brain Res Brain Res Rev. 2000;  31 (2 - 3) 342-349
  • 74 Jentsch J D, Roth R H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1999;  20 (3) 201-225
  • 75 Kapur S, Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia.  Mol Psychiatry. 2002;  7 (8) 837-844
  • 76 Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang D R, Huang Y, Cooper T, Kegeles L, Zarahn E, Abi-Dargham A, Haber S N, Laruelle M. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum.  J Cereb Blood Flow Metab. 2003;  23 (3) 285-300
  • 77 Smith G S, Schloesser R, Brodie J D, Dewey S L, Logan J, Vitkun S A, Simkowitz P, Hurley A, Cooper T, Volkow N D, Cancro R. Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects.  Neuropsychopharmacology. 1998;  18 (1) 18-25
  • 78 Breier A, Adler C M, Weisenfeld N, Su T P, Elman I, Picken L, Malhotra A K, Pickar D. Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach.  Synapse. 1998;  29 (2) 142-147
  • 79 Adams B W, Bradberry C W, Moghaddam B. NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys.  Synapse. 2002;  43 (1) 12-18
  • 80 Vollenweider F X, Geyer M A. A systems model of altered consciousness: integrating natural and drug-induced psychoses.  Brain Res Bull. 2001;  56 (5) 495-507
  • 81 Lahti A C, Holcomb H H, Medoff D R, Tamminga C A. Ketamine activates psychosis and alters limbic blood flow in schizophrenia.  Neuroreport. 1995;  6 (6) 869-872
  • 82 Kapur S, Seeman P. Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D2 receptor.  Biol Psychiatry. 2001;  49 (11) 954-957
  • 83 Walter H, Wunderlich A P, Blankenhorn M, Schafer S, Tomczak R, Spitzer M, Gron G. No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia.  Schizophr Res. 2003;  61 (2 - 3) 175-184
  • 84 Callicott J H, Mattay V S, Verchinski B A, Marenco S, Egan M F, Weinberger D R. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down.  Am J Psychiatry. 2003;  160 (12) 2209-2215
  • 85 Mattay V S, Berman K F, Ostrem J L, Esposito G, Horn J D van, Bigelow L B, Weinberger D R. Dextroamphetamine enhances „neural network-specific” physiological signals: a positron-emission tomography rCBF study.  J Neurosci. 1996;  16 (15) 4816-4822
  • 86 Mattay V S, Callicott J H, Bertolino A, Heaton I, Frank J A, Coppola R, Berman K F, Goldberg T E, Weinberger D R. Effects of dextroamphetamine on cognitive performance and cortical activation.  Neuroimage. 2000;  12 (3) 268-275
  • 87 Mattay V S, Goldberg T E, Fera F, Hariri A R, Tessitore A, Egan M F, Kolachana B, Callicott J H, Weinberger D R. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine.  Proc Natl Acad Sci U S A. 2003;  100 (10) 6186-6191
  • 88 Noga J T, Hyde T M, Herman M M, Spurney C F, Bigelow L B, Weinberger D R, Kleinman J E. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains.  Synapse. 1997;  27 (3) 168-176
  • 89 Duncan G E, Sheitman B B, Lieberman J A. An integrated view of pathophysiological models of schizophrenia.  Brain Res Brain Res Rev. 1999;  29 (2 - 3) 250-264
  • 90 Lieberman J A. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective.  Biol Psychiatry. 1999;  46 (6) 729-739
  • 91 Gourion D, Gourevitch R, Leprovost J B, Olie H LJP, Krebs M O. [Neurodevelopmental hypothesis in schizophrenia].  Encephale. 2004;  30 (2) 109-118
  • 92 Weinberger D R. On the plausibility of „the neurodevelopmental hypothesis” of schizophrenia.  Neuropsychopharmacology. 1996;  14 (3 Suppl) 1S-11S
  • 93 Pezawas L, Meyer-Lindenberg A, Drabant E M, Verchinski B A, Munoz K E, Kolachana B S, Egan M F, Mattay V S, Hariri A R, Weinberger D R. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression.  Nat Neurosci. 2005;  8 (6) 828-834
  • 94 Callicott J H, Straub R E, Pezawas L, Egan M F, Mattay V S, Hariri A R, Verchinski B A, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg T E, Weinberger D R. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia.  Proc Natl Acad Sci U S A. 2005;  102 (24) 8627-8632
  • 95 Pezawas L, Verchinski B A, Mattay V S, Callicott J H, Kolachana B S, Straub R E, Egan M F, Meyer-Lindenberg A, Weinberger D R. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology.  J Neurosci. 2004;  24 (45) 10 099-10 102
  • 96 Akil M, Kolachana B S, Rothmond D A, Hyde T M, Weinberger D R, Kleinman J E. Catechol-O-methyltransferase genotype and dopamine regulation in the human brain.  J Neurosci. 2003;  23 (6) 2008-2013
  • 97 Goldberg T E, Egan M F, Gscheidle T, Coppola R, Weickert T, Kolachana B S, Goldman D, Weinberger D R. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia.  Arch Gen Psychiatry. 2003;  60 (9) 889-896
  • 98 Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott J H, Mattay V S, Bellomo A, Scarabino T, Weinberger D R, Nardini M. Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia.  Am J Psychiatry. 2004;  161 (10) 1798-1805
  • 99 Smolka M N, Schumann G, Wrase J, Grusser S M, Flor H, Mann K, Braus D F, Goldman D, Buchel C, Heinz A. Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex.  J Neurosci. 2005;  25 (4) 836-842
  • 100 Heinz A, Braus D F, Smolka M N, Wrase J, Puls I, Hermann D, Klein S, Grusser S M, Flor H, Schumann G, Mann K, Buchel C. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter.  Nat Neurosci. 2005;  8 (1) 20-21
  • 101 Ho B C, Wassink T H, O'leary D S, Sheffield V C, Andreasen N C. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow.  Mol Psychiatry. 2005;  10 (3) 229, 287-298
  • 102 Egan M F, Goldberg T E, Kolachana B S, Callicott J H, Mazzanti C M, Straub R E, Goldman D, Weinberger D R. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.  Proc Natl Acad Sci U S A. 2001;  98 (12) 6917-6922
  • 103 Meyer-Lindenberg A, Kohn P D, Kolachana B, Kippenhan S, Mcinerney-Leo A, Nussbaum R, Weinberger D R, Berman K F. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype.  Nat Neurosci. 2005;  8 (5) 594-596
  • 104 Chen J, Lipska B K, Halim N, Ma Q D, Matsumoto M, Melhem S, Kolachana B S, Hyde T M, Herman M M, Apud J, Egan M F, Kleinman J E, Weinberger D R. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain.  Am J Hum Genet. 2004;  75 (5) 807-821
  • 105 Matsumoto M, Weickert C S, Beltaifa S, Kolachana B, Chen J, Hyde T M, Herman M M, Weinberger D R, Kleinman J E. Catechol-O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia.  Neuropsychopharmacology. 2003;  28 (8) 1521-1530
  • 106 Weickert T W, Goldberg T E, Mishara A, Apud J A, Kolachana B S, Egan M F, Weinberger D R. Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications.  Biol Psychiatry. 2004;  56 (9) 677-682
  • 107 Silver H, Feldman P, Bilker W, Gur R C. Working memory deficit as a core neuropsychological dysfunction in schizophrenia.  Am J Psychiatry. 2003;  160 (10) 1809-1816
  • 108 Callicott J H, Egan M F, Mattay V S, Bertolino A, Bone A D, Verchinksi B, Weinberger D R. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia.  Am J Psychiatry. 2003;  160 (4) 709-719
  • 109 Goldberg T E, Torrey E F, Gold J M, Bigelow L B, Ragland R D, Taylor E, Weinberger D R. Genetic risk of neuropsychological impairment in schizophrenia: a study of monozygotic twins discordant and concordant for the disorder.  Schizophr Res. 1995;  17 (1) 77-84
  • 110 Noga J T, Bartley J, Jones D W, Torrey E F, Weinberger D R. Cortical gyral anatomy and gross brain dimensions in monozygotic twins discordant for schizophrenia.  Schizophr Res. 1996;  22 (1) 27-40

O. Univ. Prof. Dr. h. c. Dr. Siegfried Kasper

Klinische Abteilung für Allgemeine Psychiatrie · Medizinische Universität Wien

Währinger Gürtel 18-20

1090 Wien

Österreich

Email: sci-genpsy@meduniwien.ac.at

    >