References
<A NAME="RD09505ST-1">1</A>
IICT Communication No: 050804.
<A NAME="RD09505ST-2A">2a</A>
Magnus P.
Rodroaguez-Lopez J.
Mulholland K.
Matthews I.
J. Am. Chem. Soc.
1992,
114:
382
<A NAME="RD09505ST-2B">2b</A>
Comins DL.
Sajan PJ.
Pyridines and their Benzo Derivatives: Reactivity at the Ring, In Comprehensive Heterocyclic Chemistry II
Vol. 5:
Katritzky AP.
Rees VW.
Scriven EF.
Pergamon Press;
Oxford:
1996.
p.37-38
<A NAME="RD09505ST-2C">2c</A>
Katritzky AR.
Rachwal S.
Rachwal S.
Tetrahedron
1996,
52:
15031
<A NAME="RD09505ST-2D">2d</A>
Itoh T.
Miyazaki M.
Nagata K.
Ohsawa A.
Tetrahedron
2000,
56:
4383
<A NAME="RD09505ST-3A">3a</A>
Volkmann RA. In
Comprehensive Organic Synthesis
Vol. 1:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.355-396
<A NAME="RD09505ST-3B">3b</A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RD09505ST-3C">3c</A>
Kobayashi S.
Ishitani H.
Chem. Rev.
1999,
99:
1069
<A NAME="RD09505ST-4">4</A>
Sundberg RJ.
The Chemistry of Indoles
Academic Press;
New York:
1970.
<A NAME="RD09505ST-5A">5a</A>
Stout DM.
Meyers AI.
Chem. Rev.
1982,
82:
223
<A NAME="RD09505ST-5B">5b</A>
Comins DL.
Zhang Y.
Joseph SP.
Org. Lett.
1999,
1:
657
<A NAME="RD09505ST-5C">5c</A>
Itoh T.
Miyazaki M.
Nagata K.
Ohsawa A.
Tetrahedron
2000,
56:
4383
<A NAME="RD09505ST-5D">5d</A>
Sieck O.
Schaller S.
Grimme S.
Liebscher J.
Synlett
2003,
337
<A NAME="RD09505ST-6">6</A>
Hatano B.
Haraguchi Y.
Kozima S.
Yamaguchi R.
Chem. Lett.
1995,
1003
<A NAME="RD09505ST-7A">7a</A>
Yamaguchi R.
Nakayasu T.
Hatano B.
Nagura T.
Kozima S.
Fujitha K.-I.
Tetrahedron
2001,
57:
109
<A NAME="RD09505ST-7B">7b</A>
Yamaguchi R.
Mochizuki K.
Kozima S.
Takaya H.
J. Chem. Soc., Chem. Commun.
1993,
981
<A NAME="RD09505ST-7C">7c</A>
Haraguchi Y.
Kozima S.
Yamaguchi R.
Tetrahedron: Asymmetry
1996,
7:
443
<A NAME="RD09505ST-8A">8a</A>
Takamura M.
Funabashi K.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2000,
122:
6327
<A NAME="RD09505ST-8B">8b</A>
Yamaguchi R.
Tanaka M.
Matsuda T.
Okano T.
Nagura T.
Fujitha K.-I.
Tetrahedron Lett.
2002,
43:
8871
<A NAME="RD09505ST-9">9</A>
Chang YM.
Lee SH.
Nam MH.
Cho MY.
Park YS.
Yoon CM.
Tetrahedron Lett.
2005,
46:
3053
<A NAME="RD09505ST-10">10</A>
Chang YM.
Park YS.
Lee SH.
Yoon CM.
Tetrahedron Lett.
2004,
45:
9049
<A NAME="RD09505ST-11">11</A>
Diaz JL.
Miguel M.
Lavilla R.
J. Org. Chem.
2004,
69:
3550
<A NAME="RD09505ST-12A">12a</A>
Yadav JS.
Reddy BVS.
Gupta MK.
Prabhakar A.
Jagadeesh B.
Chem. Commun.
2004,
2124
<A NAME="RD09505ST-12B">12b</A>
Yadav JS.
Reddy BVS.
Srinivas M.
Sathaiah K.
Tetrahedron Lett.
2005,
46:
3489
<A NAME="RD09505ST-13A">13a</A>
Cappa A.
Marcantoni E.
Torregiani E.
Bartoli G.
Bellucci MC.
Bosco M.
Sambri L.
J. Org. Chem.
1999,
64:
5696
<A NAME="RD09505ST-13B">13b</A>
Marcantoni E.
Nobili F.
Bartoli G.
Bosco M.
Sambri L.
Torregiani E.
J. Org. Chem.
1997,
62:
4183
<A NAME="RD09505ST-13C">13c</A>
Di Dea M.
Marcantoni E.
Torregiani E.
Bartoli G.
Bellucci MC.
Bosco M.
Sambri L.
J. Org. Chem.
2000,
65:
2830
<A NAME="RD09505ST-14">14</A>
General Procedure.
To a stirred solution of quinoline (1 mmol) in of MeCN (3 mL) was added ethyl chloroformate
(1.5 mmol) slowly at 0 °C and the mixture stirred at this temperature for 30 min.
To the resulting N-acyliminium ion was added CeCl3·7H2O (0.3 mmol) and indole (1 mmol) at r.t. and the resulting mixture stirred for the
appropriate time (Table
[1]
). After complete conversion as indicated by TLC, the reaction mixture was quenched
with H2O (10 mL) and extracted with CH2Cl2 (2 × 15 mL). The combined extracts were dried over anhyd Na2SO4, and concentrated in vacuo. The resulting product was purified by column chromatography
on silica gel (Merck, 100-200 mesh, EtOAc-hexane, 2:8) to afford a pure 2-(3-indolyl)-1,2-dihydroquinoline.
<A NAME="RD09505ST-15">15</A>
Spectroscopic Data for Selected Products.
Compound 3a: 1H NMR (300 MHz, CDCl3): δ = 7.86 (s, 1 H), 7.78 (d, 1 H, J = 5.9 Hz), 7.32 (br s, 1 H), 7.19 (d, 1 H, J = 7.4 Hz), 7.13-6.98 (m, 5 H), 6.78 (s, 1 H), 6.62 (d, 1 H, J = 9.7 Hz), 6.53 (d, 1 H, J = 4.5 Hz), 6.25 (dd, 1 H, J = 5.9, 2.9 Hz), 4.35 (m, 2 H), 1.40 (t, 3 H, J = 7.4 Hz). IR (KBr): ν = 3334, 3050, 2985, 1684, 1533, 1489, 1394, 1310, 1232, 1119,
1039, 752 cm-1. FAB-MS: m/z = 318 [M+], 289, 273, 245, 218, 202, 158, 130, 103, 77, 57.
Compound 3f: 1H NMR (300 MHz, CDCl3): δ = 7.80 (br s, 2 H), 7.25 (s, 1 H), 7.20 (d, 1 H, J = 7.5 Hz), 7.14-7.03 (m, 2 H), 6.91 (s, 1 H), 6.87 (d, 1 H, J = 8.3 Hz), 6.80 (d, 1 H, J = 4.3 Hz), 6.58 (d, 1 H, J = 9.0 Hz), 6.51 (d, 1 H, J = 3.7 Hz), 6.24 (dd, 1 H, J = 6.0, 3.0 Hz), 4.30 (m, 2 H), 2.30 (s, 3 H), 1.40 (t, 3 H, J = 7.4 Hz). IR (KBr): ν = 3325, 3046, 2982, 1664, 1494, 1386, 1321, 1266, 1223, 1110,
1018, 742, 645 cm-1. FAB-MS: m/z = 332 [M+] 287, 259, 216, 172, 154, 136, 107, 69, 55.
Compound 3j: 1H NMR (300 MHz, CDCl3): δ = 7.87 (s, 1 H), 7.72 (d, 1 H, J = 5.9 Hz), 7.22 (s, 1 H,), 7.15-7.01 (m, 5 H), 6.98 (s, 1 H), 6.86 (d, 1 H, J = 2.2 Hz), 6.62 (s, 1 H), 4.36 (q, 2 H, J = 14.1, 7.4 Hz), 1.38 (t, 3 H, J = 7.4 Hz). IR (KBr): ν = 3416, 3051, 2987, 1673, 1555, 1481, 1320, 1248, 1119, 1018,
886, 743 cm-1. FAB-MS: m/z = 398 [M+], 351, 323, 317, 279, 244, 207, 154, 136, 117, 107, 90, 78, 70, 56.