References and Notes
<A NAME="RG32105ST-1">1</A>
Roussakis C,
Bergé JP,
Baud JP,
Chevolot L, and
Durand P. inventors; WO 0044718 A1, 20000803.
; Chem. Abstr. 2000, 133, 134246
<A NAME="RG32105ST-2">2</A>
Bergé JP.
Bourgougnon N.
Carbonnelle D.
Le Bert V.
Tomasoni C.
Durand P.
Roussakis C.
Anticancer Res.
1997,
17:
2115
<A NAME="RG32105ST-3">3</A>
The preparation of aldehyde 2 from cyclohexane-1,4-diol will be reported in a forthcoming full paper.
<A NAME="RG32105ST-4A">4a</A>
Nagpal A.
Unny R.
Joshi YC.
Heterocycl. Commun.
2001,
32:
589
<A NAME="RG32105ST-4B">4b</A>
Simoni D.
Invidiata FP.
Rondanin R.
Grimaudo S.
Cannizzo G.
Barbusca E.
Porretto F.
D’Alessandro N.
Tolomeo M.
J. Med. Chem.
1999,
42:
4961
<A NAME="RG32105ST-4C">4c</A>
Alekseev VV.
Zelinin KN.
Yakimovich SI.
Russ. J. Org. Chem.
1995,
31:
705
<A NAME="RG32105ST-4D">4d</A>
Ellis GP.
The Chemistry of Heterocyclic Compounds, In Chromanones and Chromones
Vol. 33:
Ellis GP.
J. Wiley and Sons;
USA:
1977.
p.495
<A NAME="RG32105ST-4E">4e</A>
Raston CL.
Salem G.
J. Chem. Soc., Chem. Commun.
1984,
1702
<A NAME="RG32105ST-4F">4f</A>
Buchanan JG.
Sable HZ. In Selective Organic Transformations
Vol. 2:
Thyagarajan BS.
Wiley-Interscience;
New York:
1972.
p.1
<A NAME="RG32105ST-5">5</A>
Garnovskii AD.
Kharixov BI.
Blanco LM.
Garnovskii DA.
Burlov AS.
Vasilchenko IS.
Bondarenko GI.
J. Coord. Chem.
1999,
46:
365
<A NAME="RG32105ST-6A">6a</A>
Beck AK.
Hoekstra MS.
Seebach D.
Tetrahedron Lett.
1977,
18:
1187
<A NAME="RG32105ST-6B">6b</A>
Tang Q.
Sen SE.
Tetrahedron Lett.
1998,
39:
2249
<A NAME="RG32105ST-6C">6c</A>
Katritzky AR.
Pastor A.
J. Org. Chem.
2000,
65:
3679
<A NAME="RG32105ST-6D">6d</A>
Le Roux C.
Mandrou S.
Dubac J.
J. Org. Chem.
1996,
61:
3885 ; and references cited therein
For recent references, see:
<A NAME="RG32105ST-6E">6e</A>
Wiles C.
Watts P.
Haswell SJ.
Pombo-Villar E.
Tetrahedron Lett.
2002,
43:
2945
<A NAME="RG32105ST-6F">6f</A>
Kel’in AV.
Curr. Org. Chem.
2003,
7:
1
<A NAME="RG32105ST-7">7</A>
Ballini R.
Bartoli G.
Synthesis
1993,
965
<A NAME="RG32105ST-8">8</A>
Fargeas V.
Baalouch M.
Metay E.
Baffreau J.
Ménard D.
Gosselin P.
Bergé J.-P.
Barthomeuf C.
Lebreton J.
Tetrahedron
2004,
60:
10359
<A NAME="RG32105ST-9">9</A>
Sondheimer F.
Amiel Y.
Gaoni Y.
J. Am. Chem. Soc.
1961,
84:
270
<A NAME="RG32105ST-10">10</A>
Stacy GW.
Mikulec RA.
Org. Synth., Coll. Vol. IV
1963,
13
<A NAME="RG32105ST-11">11</A>
Nishizawa M.
Skwarczynski M.
Imagawa H.
Sugihara T.
Chem. Lett.
2002,
12
<A NAME="RG32105ST-12">12</A>
The red form of mercuric oxide was used although Nishizawa et al. (see ref. 11) described the reaction with the yellow form.
<A NAME="RG32105ST-13">13</A>
Typical Experimental Procedure for the Synthesis of Aldehydes 4 and 5 and Furan 11.
Tf2O (8 µL, 0.046 mmol, 0.11 equiv) and TMU (11 µL, 0.092 mmol, 0.22 equiv) were added
in succession at r.t. to a stirred suspension of mercuric oxide (red, 10 mg, 0.046
mmol, 0.11 equiv) in dry MeCN (1 mL). After 10 min, a solution of homopropargylic
alcohol 3 (132 mg, 0.41 mmol, 1 equiv) in dry CH2Cl2 (0.5 mL) was added, immediately followed by H2O (22 µL, 1.22 mmol, 3 equiv) and the mixture was stirred 24 h at r.t. After addition
of a 1:1 mixture of sat. aq NaHCO3 and brine (2 mL), the mixture was extracted with EtOAc (4 × 10 mL). The combined
organic phases were washed with a 10% HCl solution (10 mL), dried over anhyd Na2SO4 and the solvent was evaporated. Purification by flash chromatography (elution with
cyclohexane-EtOAc, 9:1 to 6:4) afforded OTBS-protected aldehydes (13 mg, 10%, partly
separated) and unprotected aldehydes 4 and 5 (28 mg, 33%, partly separated), as colorless oils.
Analytical data for aldehyde 4 (ca. 1:2 Z:E mixture): R
f
= 0.40 (eluent: cyclohexane-EtOAc, 6:4). IR (film): 3407, 2953, 2922, 2858, 1667,1458,
1364, 1190, 1117, 1048, 909, 877, 834 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.00 and 1.03 [2 s, 6 H, (Me)2-C, 1:3], 1.02 and 1.05 [2 s, 6 H, (Me)2-C, 2:3], 1.26 (br s, 1 H, OH), 1.35 (m, 1 H), 1.78 (m, 2 H), 1.91 (br s, 3 H, Me-C=, 1:3), 2.11 (br s, 3 H, Me-C=, 2:3), 2.19 (m, 1 H), 2.82 (br s, 2 H, CH
2
CH=, 2:3), 3.21 (br s, 2 H, CH
2
CH=, 1:3), 3.98 (m, 1 H, CHOH), 5.26 (br s, 1 H, CH2CH=), 5.88 (d, J = 8.1 Hz, 1 H, CH-CHO, 2:3), 5.99 (d, J = 8.1 Hz, 1 H, CHCHO, 1:3), 9.95 (d, J = 8.1 Hz, 1 H, CHO, 1:3), 9.99 (d, J = 8.1 Hz, 1 H, CHO, 2:3). 13C NMR (100 MHz, CDCl3): δ = 17.2 (q), 24.8 (q), 29.5 (q), 29.6 (q), 29.8 (q), 31.27 (q), 31.31 (q), 34.4
(s), 34.5 (s), 37.7 (t), 37.9 (t), 40.2 (t), 46.0 (t), 48.6 (t), 65.99 (d), 66.03
(d), 128.2 (s), 128.6 (d), 128.7 (s), 129.8 (d), 135.2 (d), 136.1 (d), 161.5, 161.8
(s), 190.9 (d), 191.4 (d). GCMS (EI, 70 eV, minor diastereomer): m/z (%) = 208 (5), 190 (38), 175 (79), 157 (64), 137 (84), 119 (56), 105 (80), 91 (85),
77 (55), 43 (50), 41 (90), 39 (100). GCMS (EI, 70 eV, major diastereomer): m/z (%) = 208 (2), 175 (36), 157 (37), 147 (69), 119 (45), 107(100), 105(68), 91 (46),
79 (33), 55 (49), 41 (64), 39 (68). GCMS (CI+, i-C4H10, both diastereomers): m/z = 209 [MH+], 191, 173, 163, 147, 109, 95, 69. HRMS (EI): m/z calcd for C13H20O2: 208.1463; found: 208.1454. Analytical data for OTBS-protected aldehyde 5: R
f
= 0.52 (eluent: PE-Et2O, 9:1). IR (film): 2955, 2928, 2857, 1727, 1643, 1471, 1381, 1360, 1256, 1080, 836,
775, 666 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.06 [s, 6 H (Me)2-Si], 0.88 (s, 9 H, t-Bu-Si), 0.97 and 0.99 [2 s, 2 × 3H, (Me)2-C], 1.34 and 1.62 [2 m, 2 H, CH
2
-C(Me)2], 1.79 and 2.04 (2 m, 2 H, CH
2
C=CH2), 2.68 (br s, 2 H, CH
2
CH=C), 3.01 (br s, 2 H, CH
2
CH=O), 3.90 (dddd, J = 11.3, 9.1, 5.5, 3.6 Hz, 1 H, CHOSi), 4.95 (br s, 1 H, CH
2=C), 5.06 (br s, 1 H, =CHCH2), 5.15 (br s, 1 H, CH
2=C), 9.59 (t, J = 2.5 Hz, 1 H, CHO). 13C NMR (100 MHz, CDCl3): δ = -4.6 (q), 18.2 (s), 26.0 (q), 29.5 (q), 31.2 (q), 34.2 (s), 38.0 (t), 45.5
(t), 46.4 (t), 49.9 (t), 66.8 (d), 116.6 (t), 129.4 (s), 134.9 (d), 138.7 (s), 199.9
(d). HRMS (ESI): m/z calcd for C19H34O2NaSi: 345.2226. Found: 345.2221.
<A NAME="RG32105ST-14">14</A>
Larock RC.
Harrison LW.
J. Am. Chem. Soc.
1984,
106:
4218
<A NAME="RG32105ST-15">15</A>
Depending on reaction time, small amounts of TBS-protected alcohols 4 and 5 were also isolated.
<A NAME="RG32105ST-16">16</A>
Sniady A.
Wheeler KA.
Dembinski R.
Org. Lett.
2005,
7:
1769
<A NAME="RG32105ST-17">17</A>
Hashmi ASK.
Bats JW.
Choi J.-H.
Schwarz L.
Tetrahedron Lett.
1998,
39:
7491
<A NAME="RG32105ST-18">18</A>
The result is the same when the crude propargylic ketone 9 or the purified allene 10 is used for the hydration reaction.
<A NAME="RG32105ST-19">19</A>
Analytical data for 11 (ca. 3:2 mixture of cis:trans diastereoisomers): R
f
= 0.34 (eluent: PE-Et2O, 6:4). IR (film): 3352, 2954, 2926, 2866, 1715, 1647, 1588, 1501, 1461, 1364, 1258,
1149, 1044, 1015, 899, 799, 730, 597 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.80, 0.86, 0.98, 0.99 (4 × s, 3 H, Me), 1.42 [br t, J = 12.5 Hz, 1 H, CH
2C(Me)2, 2:5], 1.61 [ddt, J = 12.7, 4.7, 1.3 Hz, 1 H, CH
2C(Me)2, 3:5], 1.75 (br s, 1 H, OH), 1.80 [br t, J = 12.7 Hz, 1 H, CH
2C(Me)2, 3:5], 1.87 [ddd, J = 12.5, 4.4, 2.1 Hz, 1 H, CH
2C(Me)2, 2:5], 2.07 (br t, J = 12.0 Hz, 1 H, CH
2C=CH2, 2:5), 2.46 (br t, J = 12.7 Hz, 1 H, CH
2C=CH2, 3:5), 2.57 (dd, J = 12.7, 4.5 Hz, 1 H, CH
2C=CH2, 3:5), 2.75 (ddd, J = 12.0, 4.9, 2.2 Hz, 1 H, CH
2C=CH2, 2:5), 3.14 [s, 1 H, CHC(Me2), 3:5], 3.23 [s, 1 H, CHC(Me2), 2:5], 3.91 (m, 1 H, CHOH), 4.58 and 4.90 (2 × br s, 2 H, CH
2
=C, 2:5), 4.83 and 4.86 (2 × br s, 2 H, CH
2
=C, 3:5), 6.06 (d, J = 3.1 Hz, 1 H, CH=CO, 3:5), 6.08 (d, J = 3.1 Hz, 1 H, CH=CO, 2:5), 6.26 (dd, J = 3.1, 1.8 Hz, 1 H, CH=CHO, 3:5), 6.32 (dd, J = 3.1, 1.8 Hz, 1 H, CH=CHO, 2:5), 7.29 (d, J = 1.8 Hz, 1 H, =CHO, 3:5), 7.34 (d, J = 1.8 Hz, 1 H, =CHO, 2:5). 13C NMR (100 MHz, CDCl3): δ = 22.5, 28.1, 28.7, 30.3 (4 q, Me), 35.5 [s, C(Me)2, major], 36.1 [s, C(Me)2, minor], 41.8 (t, CH2C=, major), 44.4 [t, CH2C(Me)2, major], 45.5 (t, CH2C=, minor), 50.7 [t, CH2C(Me)2, minor], 53.6 [2 d, CHC(Me)2], 67.6 (d, CHO, minor), 67.9 (d, CHO, major), 106.4 (d, CH=CO, major), 108.2 (d, CH=CO, minor), 109.9 (2 d, CH=CHO), 111.9 (t, CH2=C, minor), 113.0 (t, CH2=C, major), 140.7 (d, =CHO, major), 140.9 (d, =CHO, minor), 144.4 and 145.0 (2 s, C=CH2), 154.0 (s, =CO, minor), 156.3 (s, =CO, major). GCMS (EI, 70 eV, cis-diastereomer, major): m/z (%) = 206 (18), 188 (66), 173 (36), 145 (26), 122 (35), 121 (100), 107 (22), 93 (34),
91 (34), 77 (28), 41 (36), 39 (39). GCMS (EI, 70 eV, trans-diastereomer, minor): m/z (%) = 206 (57), 188 (38), 173 (67), 145 (33), 122 (33), 121 (100), 107 (23), 93 (37),
91 (39), 77 (33), 41 (42), 39 (47). GCMS (CI+, MeCN): m/z = 207 [MH+], 189, 161, 139, 121, 95, 65. HRMS (EI): m/z calcd for C13H18O2: 206.1307. Found: 206.1313.
<A NAME="RG32105ST-20">20</A>
Zeni G.
Larock RC.
Chem. Rev.
2004,
104:
2285 ; and references therein
<A NAME="RG32105ST-21A">21a</A>
Marshall JA.
Bartley GS.
J. Org. Chem.
1994,
59:
7169
<A NAME="RG32105ST-21B">21b</A>
Aucagne V.
Amblard F.
Agrofoglio LA.
Synlett
2004,
2406
<A NAME="RG32105ST-22A">22a</A>
Hashmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285
<A NAME="RG32105ST-22B">22b</A>
Yao T.
Zhang X.
Larock RC.
J. Am. Chem. Soc.
2004,
126:
11164
<A NAME="RG32105ST-23">23</A>
Kel’in AV.
Gevorgyan V.
J. Org. Chem.
2002,
67:
95
<A NAME="RG32105ST-24">24</A>
Barluenga J.
Vazquez-Villa H.
Ballesteros A.
Gonzalez JM.
J. Am. Chem. Soc.
2003,
125:
9028
<A NAME="RG32105ST-25A">25a</A>
Brown CD.
Chong JM.
Shen L.
Tetrahedron
1999,
55:
14233
<A NAME="RG32105ST-25B">25b</A>
Obrecht D.
Helv. Chim. Acta
1989,
72:
447
<A NAME="RG32105ST-26A">26a</A>
Arcadi A.
Marinelli F.
Pini E.
Rossi E.
Tetrahedron Lett.
1996,
37:
3387
<A NAME="RG32105ST-26B">26b</A>
Vieser R.
Eberbach W.
Tetrahedron Lett.
1995,
36:
4405
<A NAME="RG32105ST-27">27</A>
Imagawa H.
Kurisaki T.
Nishizawa M.
Org. Lett.
2004,
6:
3679
<A NAME="RG32105ST-28A">28a</A>
Hashmi ASK.
Schwarz L.
Bats JW.
J. Prakt. Chem.
2000,
342:
40
<A NAME="RG32105ST-28B">28b</A>
Hashmi ASK.
Schwarz L.
Bolte M.
Tetrahedron Lett.
1998,
39:
8969