ABSTRACT
Subarachnoid hemorrhage (SAH) is a devastating and complicated disease. The development
of therapeutic interventions has been hampered by a poor understanding of the three
components of the disease pathology in SAH: aneurysm rupture, cerebral edema, and
vasospasm. The role of inflammation in the pathology of subarachnoid hemorrhage will
be reviewed. The events leading up to aneurysm rupture are heralded by degradation
of the endothelial cell layer integrity and inflammatory cell infiltration into the
wall of the aneurysm. This is associated with release of active agents that can digest
the basement membrane and may cause rupture. After rupture, cytokine release by mononuclear
leukocytes is associated with early edema. Vasospasm is a complicated process that
includes arterial wall thickening and vasoconstriction. Evidence supports the role
of inflammation in free radical formation and in perturbations in nitric oxide and
endothelin-1 levels that are important mediators of the vasoconstriction in vasospasm.
Targeting the inflammatory mediators associated with the three prominent events in
SAH is a promising strategy for reducing the mortality and morbidity in these patients.
More study is needed to determine which specific effectors in the inflammatory cascade
may serve as targets for intervention.
KEYWORDS
Subarachnoid hemorrhage - inflammation - vasospasm - immunology - cerebral aneurysm
REFERENCES
- 1
Hop J W, Rinkel G J, Algra A, van Gijn J.
Changes in functional outcome and quality of life in patients and caregivers after
aneurysmal subarachnoid hemorrhage.
J Neurosurg.
2001;
95
957-963
- 2
Ingall T J, Whisnant J P, Wiebers D O, O'Fallon W M.
Has there been a decline in subarachnoid hemorrhage mortality?.
Stroke.
1989;
20
718-724
- 3
Shishehbor M H, Brennan M L, Aviles R J et al..
Statins promote potent systemic antioxidant effects through specific inflammatory
pathways.
Circulation.
2003;
108
426-431
- 4
Penn M S, Topol E J.
Tissue factor, the emerging link between inflammation, thrombosis, and vascular remodeling.
Circ Res.
2001;
89
1-2
- 5
Kovanen P T, Pentikainen M O.
Circulating lipoproteins as proinflammatory and anti-inflammatory particles in atherogenesis.
Curr Opin Lipidol.
2003;
14
411-419
- 6
Murtagh B M, Anderson H V.
Inflammation and atherosclerosis in acute coronary syndromes.
J Invasive Cardiol.
2004;
16
377-384
- 7
Smeeth L, Thomas S L, Hall A J, Hubbard R, Farrington P, Vallance P.
Risk of myocardial infarction and stroke after acute infection or vaccination.
N Engl J Med.
2004;
351
2611-2618
- 8
Varsos V G, Liszczak T M, Han D H et al..
Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine
in a “two-hemorrhage” canine model.
J Neurosurg.
1983;
58
11-17
- 9
Megyesi J F, Vollrath B, Cook D A, Findlay J M.
In vivo animal models of cerebral vasospasm: a review.
Neurosurgery.
2000;
46
448-460
- 10
Dumont A S, Dumont R J, Chow M M et al..
Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation.
Neurosurgery.
2003;
53
123-133
- 11
Krex D, Konig I R, Ziegler A, Schackert H K, Schackert G.
Extended single nucleotide polymorphism and haplotype analysis of the elastin gene
in Caucasians with intracranial aneurysms provides evidence for racially/ethnically
based differences.
Cerebrovasc Dis.
2004;
18
104-110
- 12
Zhang B, Fugleholm K, Day L B, Ye S, Weller R O, Day I N.
Molecular pathogenesis of subarachnoid haemorrhage.
Int J Biochem Cell Biol.
2003;
35(9)
1341-1360
- 13
Krex D, Ziegler A, Konig I R, Schackert H K, Schackert G.
Polymorphisms of the NADPH oxidase P22PHOX gene in a Caucasian population with intracranial
aneurysms.
Cerebrovasc Dis.
2003;
16
363-368
- 14
Takenaka K, Sakai H, Yamakawa H et al..
Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms.
J Neurosurg.
1999;
90
935-938
- 15
International Study of Unruptured Intracranial Aneurysms Investigators .
Unruptured intracranial aneurysms: risk of rupture and risks of surgical intervention.
N Engl J Med.
1998;
339
1725-1733
- 16
Juvela S, Porras M, Heiskanen O.
Natural history of unruptured intracranial aneurysms: a long-term follow-up study.
J Neurosurg.
1993;
79
174-182
- 17
Treska V, Kocova J, Boudova L et al..
Inflammation in the wall of abdominal aortic aneurysm and its role in the symptomatology
of aneurysm.
Cytokines Cell Mol Ther.
2002;
7
91-97
- 18
Frosen J, Piippo A, Paetau A et al..
Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological
analysis of 24 unruptured and 42 ruptured cases.
Stroke.
2004;
35
2287-2293
- 19
Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R.
Structural fragility and inflammatory response of ruptured cerebral aneurysms: a comparative
study between ruptured and unruptured cerebral aneurysms.
Stroke.
1999;
30
1396-1401
- 20
Chyatte D, Bruno G, Desai S, Todor D R.
Inflammation and intracranial aneurysms.
Neurosurgery.
1999;
45
1137-1146
- 21
Okawara S H.
Warning signs prior to rupture of an intracranial aneurysm.
J Neurosurg.
1973;
38
575-580
- 22
Okada Y, Nakanishi I.
Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase
2 (“gelatinase”) by human neutrophil elastase and cathepsin G.
FEBS Lett.
1989;
249
353-356
- 23
Pintucci G, Yu P J, Sharony R et al..
Induction of stromelysin-1 (MMP-3) by fibroblast growth factor-2 (FGF-2) in FGF-2-/-
microvascular endothelial cells requires prolonged activation of extracellular signal-regulated
kinases-1 and -2 (ERK-1/2).
J Cell Biochem.
2003;
90
1015-1025
- 24
Fukuda S, Hashimoto N, Naritomi H et al..
Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase.
Circulation.
2000;
101
2532-2538
- 25
Hashimoto N, Handa H, Hazama F.
Experimentally induced cerebral aneurysms in rats.
Surg Neurol.
1978;
10
3-8
- 26
Abruzzo T, Shengelaia G G, Dawson III R C, Owens D S, Cawley C M, Gravanis M B.
Histologic and morphologic comparison of experimental aneurysms with human intracranial
aneurysms.
AJNR Am J Neuroradiol.
1998;
19
1309-1314
- 27
Frohlich M, Sund M, Lowel H, Imhof A, Hoffmeister A, Koenig W.
Independent association of various smoking characteristics with markers of systemic
inflammation in men: results from a representative sample of the general population
(MONICA Augsburg Survey 1994/95).
Eur Heart J.
2003;
24
1365-1372
- 28
de Maat M P, Kluft C.
The association between inflammation markers, coronary artery disease and smoking.
Vascul Pharmacol.
2002;
39
137-139
- 29
Claassen J, Carhuapoma J R, Kreiter K T, Du E Y, Connolly E S, Mayer S A.
Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact
on outcome.
Stroke.
2002;
33
1225-1232
- 30
Fukui S, Nawashiro H, Otani N et al..
Focal brain edema and natriuretic peptides in patients with subarachnoid hemorrhage.
Acta Neurochir Suppl.
2003;
86
489-491
- 31
Laszlo F A, Varga C, Doczi T.
Cerebral oedema after subarachnoid haemorrhage: pathogenetic significance of vasopressin.
Acta Neurochir (Wien).
1995;
133
122-133
- 32
Laszlo F A, Varga C, Nakamura S.
Vasopressin receptor antagonist OPC-31260 prevents cerebral oedema after subarachnoid
haemorrhage.
Eur J Pharmacol.
1999;
364
115-122
- 33
Aihara Y, Kasuya H, Onda H, Hori T, Takeda J.
Quantitative analysis of gene expressions related to inflammation in canine spastic
artery after subarachnoid hemorrhage.
Stroke.
2001;
32
212-217
- 34
Kusaka G, Ishikawa M, Nanda A, Granger D N, Zhang J H.
Signaling pathways for early brain injury after subarachnoid hemorrhage.
J Cereb Blood Flow Metab.
2004;
24
916-925
- 35
Croll S D, Ransohoff R M, Cai N et al..
VEGF-mediated inflammation precedes angiogenesis in adult brain.
Exp Neurol.
2004;
187
388-402
- 36
Ishida S, Usui T, Yamashiro K et al..
VEGF164 is proinflammatory in the diabetic retina.
Invest Ophthalmol Vis Sci.
2003;
44
2155-2162
- 37
Polin R S, Bavbek M, Shaffrey M E et al..
Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal
fluid of patients after subarachnoid hemorrhage.
J Neurosurg.
1998;
89
559-567
- 38
Mayberg M R, Okada T, Bark D H.
Morphologic changes in cerebral arteries after subarachnoid hemorrhage.
Neurosurg Clin N Am.
1990;
1
417-432
- 39
Kistler J P, Crowell R M, Davis K R et al..
The relation of cerebral vasospasm to the extent and location of subarachnoid blood
visualized by CT scan: a prospective study.
Neurology.
1983;
33
424-436
- 40
Rinkel G J, Wijdicks E F, Vermeulen M, Hasan D, Brouwers P J, van Gijn J.
The clinical course of perimesencephalic nonaneurysmal subarachnoid hemorrhage.
Ann Neurol.
1991;
29
463-468
- 41
Pluta R M, Thompson B G, Afshar J K, Boock R J, Iuliano B, Oldfield E H.
Nitric oxide and vasospasm.
Acta Neurochir Suppl.
2001;
77
67-72
- 42
Ng W H, Moochhala S, Yeo T T, Ong P L, Ng P Y.
Nitric oxide and subarachnoid hemorrhage: elevated level in cerebrospinal fluid and
their implications.
Neurosurgery.
2001;
49
622-626
- 43
Zuccarello M.
Endothelin: the “prime suspect” in cerebral vasospasm.
Acta Neurochir Suppl.
2001;
77
61-65
- 44
Allen G S.
Role of calcium antagonists in cerebral arterial spasm.
Am J Cardiol.
1985;
55
149B-153B
- 45
Kivisakk P, Mahad D J, Callahan M K et al..
Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through
choroid plexus and meninges via P-selectin.
Proc Natl Acad Sci USA.
2003;
100
8389-8394
- 46
Spallone A, Acqui M, Pastore F S, Guidetti B.
Relationship between leukocytosis and ischemic complications following aneurysmal
subarachnoid hemorrhage.
Surg Neurol.
1987;
27
253-258
- 47
Hallenbeck J M, Dutka A J, Tanishima T et al..
Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during
the early postischemic period.
Stroke.
1986;
17
246-253
- 48
Handa Y, Kabuto M, Kobayashi H, Kawano H, Takeuchi H, Hayashi M.
The correlation between immunological reaction in the arterial wall and the time course
of the development of cerebral vasospasm in a primate model.
Neurosurgery.
1991;
28
542-549
- 49
Peterson J W, Kwun B D, Hackett J D, Zervas N T.
The role of inflammation in experimental cerebral vasospasm.
J Neurosurg.
1990;
72
767-774
- 50
Basset C, Holton J, O'Mahony R, Roitt I.
Innate immunity and pathogen-host interaction.
Vaccine.
2003;
21(suppl 2)
S12-S23
- 51
Aihara Y, Kasuya H, Onda H, Hori T, Takeda J.
Quantitative analysis of gene expressions related to inflammation in canine spastic
artery after subarachnoid hemorrhage.
Stroke.
2001;
32
212-217
- 52
Gaetani P, Tartara F, Pignatti P et al..
Cisternal CSF levels of cytokines after subarachnoid hemorrhage.
Neurol Res.
1998;
20
337-342
- 53
Kikuchi T, Okuda Y, Kaito N, Abe T.
Cytokine production in cerebrospinal fluid after subarachnoid haemorrhage.
Neurol Res.
1995;
17
106-108
- 54
Buffon A, Biasucci L M, Liuzzo G, D'Onofrio G, Crea F, Maseri A.
Widespread coronary inflammation in unstable angina.
N Engl J Med.
2002;
347
5-12
- 55
Bhatt D L, Topol E J.
Need to test the arterial inflammation hypothesis.
Circulation.
2002;
106
136-140
- 56
Scheld W M, Koedel U, Nathan B, Pfister H W.
Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury.
J Infect Dis.
2002;
186(suppl 2)
S225-S233
- 57
Hazen S L, Hsu F F, Mueller D M, Crowley J R, Heinecke J W.
Human neutrophils employ chlorine gas as an oxidant during phagocytosis.
J Clin Invest.
1996;
98
1283-1289
- 58
Masaoka H, Suzuki R, Hirata Y, Emori T, Marumo F, Hirakawa K.
Raised plasma endothelin in aneurysmal subarachnoid haemorrhage.
Lancet.
1989;
2
1402
- 59
Zubkov A Y, Rollins K S, Parent A D, Zhang J, Bryan Jr R M.
Mechanism of endothelin-1-induced contraction in rabbit basilar artery.
Stroke.
2000;
31
526-533
- 60
Fassbender K, Hodapp B, Rossol S et al..
Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal
fluid leukocytes.
Stroke.
2000;
31
2971-2975
- 61
Thomas J E, Nemirovsky A, Zelman V, Giannotta S L.
Rapid reversal of endothelin-1-induced cerebral vasoconstriction by intrathecal administration
of nitric oxide donors.
Neurosurgery.
1997;
40
1245-1249
- 62
Sehba F A, Schwartz A Y, Chereshnev I, Bederson J B.
Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage.
J Cereb Blood Flow Metab.
2000;
20
604-611
- 63
Goksel H M, Karadag O, Turaclar U, Tas F, Oztoprak I.
Nitric oxide synthase inhibition attenuates vasoactive response to spinal cord stimulation
in an experimental cerebral vasospasm model.
Acta Neurochir (Wien).
2001;
143
383-390
discussion 390-381
- 64
Lin C L, Calisaneller T, Ukita N, Dumont A S, Kassell N F, Lee K S.
A murine model of subarachnoid hemorrhage-induced cerebral vasospasm.
J Neurosci Methods.
2003;
123
89-97
- 65
Goodman J C, Feng Y Q, Valadka A B, Bryan R J, Robertson C S.
Measurement of the nitric oxide metabolites nitrate and nitrite in the human brain
by microdialysis.
Acta Neurochir Suppl.
2002;
81
343-345
- 66
Ohta H, Ito Z, Yasui N, Suzuki A.
Extensive evacuation of subarachnoid clot for prevention of vasospasm: effective or
not?.
Acta Neurochir (Wien).
1982;
63
111-116
- 67
Thomas J E, McGinnis G.
Safety of intraventricular sodium nitroprusside and thiosulfate for the treatment
of cerebral vasospasm in the intensive care unit setting.
Stroke.
2002;
33
486-492
- 68
Chen D, Nishizawa S, Yokota N, Ohta S, Yokoyama T, Namba H.
High-dose methylprednisolone prevents vasospasm after subarachnoid hemorrhage through
inhibition of protein kinase C activation.
Neurol Res.
2002;
24
215-222
- 69
Shibata S, Suzuki S, Ohkuma H, Kimura M, Fujita S.
Effects of intracisternal methylprednisolone on lipid peroxidation in experimental
subarachnoid haemorrhage.
Acta Neurochir (Wien).
1999;
141
529-532
- 70
Haley Jr E C, Kassell N F, Apperson-Hansen C, Maile M H, Alves W M.
A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients
with aneurysmal subarachnoid hemorrhage: a cooperative study in North America.
J Neurosurg.
1997;
86
467-474
- 71
Manno E M, Gress D R, Ogilvy C S, Stone C M, Zervas N T.
The safety and efficacy of cyclosporine A in the prevention of vasospasm in patients
with Fisher grade 3 subarachnoid hemorrhages: a pilot study.
Neurosurgery.
1997;
40
289-293
- 72
El Bekay R, Alvarez M, Monteseirin J et al..
Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils:
involvement of mitogen-activated protein kinase, calcineurin, and the transcription
factor NF-kappaB.
Blood.
2003;
102
662-671
J. Javier ProvencioM.D.
Assistant Professor, Lerner Cleveland Clinic College of Medicine of CWRU, Cleveland
Clinic Foundation Neurology/S90, Cleveland, OH 44195