Geburtshilfe Frauenheilkd 2006; 66(5): 474-480
DOI: 10.1055/s-2006-924118
Originalarbeit

Georg Thieme Verlag KG Stuttgart · New York

Optimizing the Outcome of Grafted Ovarian Tissue: Exogenous Gonadotropins to Increase Microvessel Density and Follicular Survival

Optimierung der Ergebnisse der Transplantation von Ovarialgewebe: Exogene Gonadotropine zur Erhöhung der mikrovaskulären Dichte und des follikulären ÜberlebensD. Denschlag1 , C. Krautter1 , K. Hancke1 , A. Geist2 , O. Strauch2 , H. Goebel3 , C. Tempfer4 , C. Keck1
  • 1Department of Obstetrics and Gynecology, University of Freiburg School of Medicine, Freiburg, Germany
  • 2Department of Surgery, University of Freiburg School of Medicine, Freiburg, Germany
  • 3Institute of Pathology, University of Freiburg School of Medicine, Freiburg, Germany
  • 4Department of Obstetrics and Gynecology, University of Vienna School of Medicine, Vienna, Austria
Further Information

Publication History

Eingang Manuskript: 20.3.2006

Akzeptiert: 27.3.2006

Publication Date:
23 May 2006 (online)

Zusammenfassung

Einführung: Die Strategie der Kryokonservierung und Transplantation von ovariellem Gewebe bei malignomerkrankten Frauen zur Erhaltung der Fertilität beinhaltet die Problematik eines ausgeprägten ischämiebedingten Follikelverlustes. Fragestellung: Lässt sich durch die systemische bzw. lokale Applikation angiogeneseinduzierender Substanzen die (Neo-)Vaskularisation nach Transplantation verbessern bzw. der Follikel-Verlust reduzieren? Material und Methoden: A: Drei weiblichen Schafen wurden beide Ovarien explantiert, in 1 mm dicke Scheiben geschnitten und anschließend autolog heterotop in die Bauchwand retransplantiert. Bei einem Schaf wurde das ovarielle Gewebe im Rahmen der Transplantation lokal in eine VEGF (5 µg-)Fibrinkleber-Suspension eingebettet. Einem weiteren Schaf wurden über 2 Wochen nach Transplantation alle 2 Tage 150 IE/hMG systemisch appliziert. Das dritte Schaf blieb ohne Behandlung. Neun Monate später wurde das transplantierte Gewebe zur histologischen Analyse entnommen und das Follikelüberleben miteinander verglichen. B: Zwei weiteren Schafe wurden beide Ovarien explantiert, in entsprechende Scheiben präpariert, und in 20 immun-inkompetente Mäuse xenolog heterotop im Bereich des Rückens transplantiert. Zehn dieser Mäuse erhielten jeden 2. Tag 10 IE hMG systemisch beginnend ab dem Tag der Transplantation bis zur finalen Explantation. Die übrigen 10 Mäuse erhielten keine weitere spezifische Behandlung. Anschließend wurden jeweils 2 Mäuse beider Gruppen an Tag 2, 4, 6, 10 und 14 nach primärer Transplantation euthanasiert, das Transplantat entnommen und die Gefäßdichte in beiden Gruppen zu unterschiedlichen Zeitpunkten miteinander verglichen. Ergebnisse: A: Im Gegensatz zur Applikation von VEGF, welche im Vergleich zur Kontrolle keinen Effekt auf das Follikelüberleben hatte (12 vs. 7,4 %), konnte durch die Applikation von hMG das Follikelüberleben deutlich gesteigert werden (12 % vs. 29 %). B: Weiterhin ergab die Applikation von hMG im Vergleich zur Kontrollgruppe eine signifikant höhere mittlere Gefäßdichte pro mm2 zu sämtlichen untersuchten Zeitpunkten (Tag 2: 22 vs. 13 [p < 0,001], Tag 4: 22 vs. 13 [p < 0,001], Tag 6: 17 vs. 13 [p = 0,006], Tag 10: 28 vs. 12 [p < 0,001], bzw. Tag 14: 35 vs. 16 [p < 0,001]). Schlussfolgerungen: Der ausgeprägte ischämiebedingte Follikelverlust nach Transplantation von ovariellem Gewebe lässt sich durch die systemische Gabe von hMG, welches eine gesteigerte (Neo-)Vaskularisation induziert, deutlich reduzieren.

Abstract

Background: Fertility preservation by ovarian cryopreservation and heterotopic ovarian transplant is hampered by ischemic damage of the transplanted graft and poor oocyte viability. Design: Two longitudinal experiments were done - phase A: to evaluate if the administration of gonadotrophins (hMG) or vascular endothelial growth factor (VEGF) increases follicular survival after heterotopic autologous ovarian transplantation, and phase B: to determine if the administration of hMG enhanced neovascularization by increase in microvessel density in the heterotopic xenologous ovarian transplant. Methods: A: In three sheep, ovaries were removed and immediately transplanted into the abdominal wall. In one sheep, VEGF was administered at the transplantation site during surgery, the second was treated with hMG after transplantation for 2 weeks, and the third sheep served as control. B: The ovaries from two other sheep were removed, prepared in tissue pieces, and immediately grafted into the subcutaneous space of several combined immunodeficient (SCID-)mice (n = 20). Following the transplantation, 10 of these mice (group 1) were treated with hMG until they were sacrificed, the other 10 untreated mice (group 2) served as controls. In each group, two mice were sacrificed at intervals of 2, 4, 6, 10, and 14 days after grafting to permit histologic examination of the grafted tissue. Results: A: Whereas VEGF had no effect on follicular survival after transplantation (12.0 % vs. 7.4 %.), the administration of hMG increased follicular survival (12.0 % vs. 29.0 %). B: The use of hMG resulted in significantly higher numbers of microvessels per mm2 (mean) at all of the time points studied - at 2 days 22 vs. 13 (p < 0.001), 4 days 22 vs. 13 (p < 0.001), 6 days 17 vs. 13 (p = 0.006), 10 days 28 vs. 12 (p < 0.001), and 14 days 35 vs. 16 (p < 0.001), respectively. Conclusion: The improved follicular survival and increase in microvessel density in heterotopic ovarian transplants associated with the use of hMG suggests that neovascularization may be an important mechanism by which hMG improves the survival of ovarian transplants.

References

  • 1 Howe H L, Wingo P A, Thun M J. et al . Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends.  Journal of the National Cancer Institute. 2001;  93 824-842
  • 2 Oktay K, Buyuk E, Veeck L. et al . Embryo development after heterotopic transplantation of cryopreserved ovarian tissue [see comment].  Lancet. 2004;  363 837-840
  • 3 Donnez J, Dolmans M M, Demylle D. et al . Livebirth after orthotopic transplantation of cryopreserved ovarian tissue.  Lancet. 2004;  364 1405-1410 Lancet. 2004;  364 (9450) 2020
  • 4 The ESHRE Task Force on Ethics and Law . Taskforce 7. Ethical considerations for the cryopreservation of gametes and reproductive tissues for self use.  Hum Reprod. 2004;  19 460-462
  • 5 Radford J A, Lieberman B A, Brison D R. et al . Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin's lymphoma.  Lancet. 2001;  357 1172-1175
  • 6 Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice.  Fertility & Sterility. 2000;  74 122-129
  • 7 Bedaiwy M A, Falcone T. Ovarian tissue banking for cancer patients: reduction of post-transplantation ischaemic injury: intact ovary freezing and transplantation.  Human Reproduction. 2004;  19 1242-1244
  • 8 Falcone T, Attaran M, Bedaiwy M A, Goldberg J M. Ovarian function preservation in the cancer patient.  Fertility & Sterility. 2004;  81 243-257
  • 9 Bedaiwy M A, Jeremias E, Gurunluoglu R. et al . Restoration of ovarian function after autotransplantation of intact frozen-thawed sheep ovaries with microvascular anastomosis.  Fertility & Sterility. 2003;  79 594-602
  • 10 Jeremias E, Bedaiwy M A, Gurunluoglu R, Biscotti C V, Siemionow M, Falcone T. Heterotopic autotransplantation of the ovary with microvascular anastomosis: a novel surgical technique.  Fertility & Sterility. 2002;  77 1278-1282
  • 11 Wang X, Chen H, Yin H, Kim S S, Lin T S, Gosden R G. Fertility after intact ovary transplantation.  Nature. 2002;  415 385
  • 12 Aubard Y, Piver P, Cogni Y, Fermeaux V, Poulin N, Driancourt M A. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep.  Human Reproduction. 1999;  14 2149-2154
  • 13 Baird D T, Webb R, Campbell B K, Harkness L M, Gosden R G. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196 °C.  Endocrinology. 1999;  140 462-471
  • 14 Weissman A, Gotlieb L, Colgan T, Jurisicova A, Greenblatt E M, Casper R F. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse.  Biology of Reproduction. 1999;  60 1462-1467
  • 15 Imthurn B, Cox S L, Jenkin G, Trounson A O, Shaw J M. Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: implications for human ovarian grafting.  Molecular & Cellular Endocrinology. 2000;  163 141-146
  • 16 Yamamoto S, Konishi I, Tsuruta Y. et al . Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary.  Gynecological Endocrinology. 1997;  11 371-381
  • 17 Dissen G A, Lara H E, Fahrenbach W H, Costa M E, Ojeda S R. Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression.  Endocrinology. 1994;  134 1146-1154
  • 18 Taub P J, Marmur J D, Zhang W X. et al . Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps.  Plastic & Reconstructive Surgery. 1998;  102 2033-2039
  • 19 Zhang F, Oswald T, Lin S. et al . Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat.  British Journal of Plastic Surgery. 2003;  56 653-659
  • 20 Schnorr J, Oehninger S, Toner J. et al . Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology.  Human Reproduction. 2002;  17 612-619
  • 21 Ozeki M, Tabata Y. In vivo promoted growth of mice hair follicles by the controlled release of growth factors.  Biomaterials. 2003;  24 2387-2394
  • 22 Horch R E, Bannasch H, Kopp J, Andree C, Stark G B. Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis.  Cell Transplantation. 1998;  7 309-317
  • 23 Israely T, Dafni H, Granot D, Nevo N, Tsafriri A, Neeman M. Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts.  Biology of Reproduction. 2003;  68 2055-2064
  • 24 Wang H, Mooney S, Wen Y, Behr B, Polan M L. Follicle development in grafted mouse ovaries after cryopreservation and subcutaneous transplantation.  American Journal of Obstetrics & Gynecology. 2002;  187 370-374
  • 25 Risau W. Mechanisms of angiogenesis.  Nature. 1997;  386 671-674
  • 26 Distler J H, Hirth A, Kurowska-Stolarska M, Gay R E, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis.  Quarterly Journal of Nuclear Medicine. 2003;  47 149-161
  • 27 Geva E, Jaffe R B. Role of angiopoietins in reproductive tract angiogenesis.  Obstetrical & Gynecological Survey. 2000;  55 511-519
  • 28 Pietrowski D, Keck C. Differential regulation of ANG2 and VEGF‐A in human granulosa lutein cells by choriogonadotropin.  Experimental & Clinical Endocrinology & Diabetes. 2004;  112 208-214
  • 29 Zygmunt M, Herr F, Keller-Schoenwetter S. et al . Characterization of human chorionic gonadotropin as a novel angiogenic factor.  Journal of Clinical Endocrinology & Metabolism. 2002;  87 5290-5296

Dominik Denschlag

Department of Obstetrics and Gynecology
McGill University Montreal
Royal Victoria Hospital

687 Pine Avenue West

Women's Pavilion, F9.29

Canada, QC

Phone: + 1-514-843-2833

Fax: + 1-514-843-2830

Email: dominik.denschlag@muhc.mcgill.ca

    >