Zusammenfassung
In den letzten Jahren hat der Zusammenhang zwischen metabolischen Störungen und dem
Mammakarzinomrisiko zunehmendes Interesse gewonnen. Die Adipositas ist mit einem gesteigerten
Brustkrebsrisiko assoziiert. Die Zunahme an Fettgewebe führt zu vermehrter extraglandulärer
Östrogenbiosynthese, kann in erhöhten Serumspiegeln freier Fettsäuren (FFA) resultieren
und zeigt einen starken Zusammenhang mit Insulinresistenz und somit Hyperinsulinämie.
Östrogene, FFA und Insulin fördern das Wachstum von Brustkrebszellen und erhöhte Plasmaspiegel
konnten in Beobachtungsstudien positiv mit dem Mammakarzinomrisiko korreliert werden.
Adipozyten sezernieren zudem Adipokine, wie Adiponectin, Leptin, TNFα und IL-6, die
das Wachstum von Brustkrebszellen auf unterschiedliche Weise beeinflussen können.
Die vorliegende Übersichtsarbeit fasst den derzeitigen Kenntnisstand zum Zusammenhang
zwischen Metabolismus und dem Mammakarzinomrisiko zusammen.
Abstract
Metabolic disorders are known to affect the risk for breast cancer. Obesity affects
the risk and prognosis of different kinds of cancers, including breast cancer. Metabolic
changes, such as increased estrogen biosynthesis, elevated serum free fatty acids
(FFA), or hyperinsulinemia, associated with the metabolic syndrome are considered
to be responsible for the effects of obesity on breast cancer. Furthermore, white
adipose tissue secretes a wide range of biologically active peptides, including adiponectin,
leptin, TNFα and IL-6. These adipocytokines have been shown to be involved in the
development and progression of breast cancer. The focus of this review is to summarize
the current knowledge on metabolic disorders as risk factors for breast cancer.
Schlüsselwörter
Mammakarzinom - Lipidmetabolismus - Diabetes mellitus Typ 2 - Adipozytokine - Adipositas
Key words
Breast cancer - lipid metabolism - type 2 diabetes mellitus - adipocytokines - obesity
Literatur
- 1
Parkin D M.
International variation.
Oncogene.
2004;
23
6329-6340
- 2
Bray F, Sankila R, Ferlay J, Parkin D M.
Estimates of cancer incidence and mortality in Europe in 1995.
Eur J Cancer.
2002;
38
99-166
- 3
Key T J, Pike M C.
The role of oestrogens and progestagens in the epidemiology and prevention of breast
cancer.
Eur J Cancer Clin Oncol.
1988;
24
29-43
- 4 Dao T L.
The role of ovarian steroid hormones in mammary carcinogenesis. Pike MC, Siiteri PK, Welsch CW Hormones and Breast Cancer. Banbury Report No. 8. Cold
Spring Harbor (NY); Cold Spring Harbor Laboratory 1981: 281-295
- 5
Ackerman G E, Smith M E, Mendelson C R, MacDonald P C, Simpson E R.
Aromatization of androstenedione by human adipose tissue stromal cells in monolayer
culture.
J Clin Endocrinol Metab.
1981;
53
412-417
- 6
Miller W R, Forrest A P.
Oestradiol synthesis by a human breast carcinoma.
Lancet.
1974;
2
866-868
- 7
De Waard F, Baanders-Vanhalewijn E A, Huizinga J.
The bimodal age distribution of patients with mammary carcinoma; evidence for the
existence of 2 types of human breast cancer.
Cancer.
1964;
17
141-151
- 8
Bruning P F, Bonfrer J M, Hart A A, van Noord P A, van der Hoeven H, Collette H J,
Battermann J J, de Jong-Bakker M, Nooijen W J, de Waard F.
Body measurements, estrogen availability and the risk of human breast cancer: a case-control
study.
Int J Cancer.
1992;
51
14-19
- 9
Friedmann J M.
Obesity in the new millennium.
Nature.
2000;
404
632-634
- 10
Hu E, Liang P, Spiegelman B M.
AdipoQ is a novel adipose-specific gene dysregulated in obesity.
J Biol Chem.
1996;
271
10697-10703
- 11
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K.
cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1
(AdiPose Most abundant Gene transcript 1).
Biochem Biophys Res Commun.
1996;
221
286-289
- 12
Weisberg S P, McCann D, Desai M, Rosenbaum M, Leibel R L, Ferrante Jr A W.
Obesity is associated with macrophage accumulation in adipose tissue.
J Clin Invest.
2003;
112
1796-1808
- 13
Kern P A, Ranganathan S, Li C, Wood L, Ranganathan G.
Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity
and insulin resistance.
Am J Physiol Endocrinol Metab.
2001;
280
E745-E751
- 14
Green A, Hougaard P.
Epidemiological studies of diabetes mellitus in Denmark: 5. Mortality and causes of
death among insulin-treated diabetic patients.
Diabetologia.
1984;
26
190-194
- 15
Yancik R, Wesley M N, Ries L A, Havlik R J, Edwards B K, Yates J W.
Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years
and older.
JAMA.
2001;
285
885-892
- 16
Michels K B, Solomon C G, Hu F B, Rosner B A, Hankinson S E, Colditz G A, Manson J E.
Nurses' Health Study .
Type 2 diabetes and subsequent incidence of breast cancer in the Nurses' Health Study.
Diabetes Care.
2003;
26
1752-1758
- 17
Calle E E, Rodriguez C, Walker-Thurmond K, Thun M J.
Overweight, obesity, and mortality from cancer in a prospectively studied cohort of
U.S. adults.
N Engl J Med.
2003;
348
1625-1638
- 18
Carroll K K.
Obesity as a risk factor for certain types of cancer.
Lipids.
1998;
33
1055-1059
- 19
Bergstrom A, Pisani P, Tenet V, Wolk A, Adami H O.
Overweight as an avoidable cause of cancer in Europe.
Int J Cancer.
2001;
91
421-430
- 20
Peto J.
Cancer epidemiology in the last century and the next decade.
Nature.
2001;
411
390-395
- 21
Michaud D S, Giovannucci E, Willett W C, Colditz G A, Stampfer M J, Fuchs C S.
Physical activity, obesity, height, and the risk of pancreatic cancer.
JAMA.
2001;
286
921-929
- 22
Wolk A, Gridley G, Svensson M, Nyren O, McLaughlin J K, Fraumeni J F, Adam H O.
A prospective study of obesity and cancer risk (Sweden).
Cancer Causes Control.
2001;
12
13-21
- 23
Moller H, Mellemgaard A, Lindvig K, Olsen J H.
Obesity and cancer risk: a Danish record-linkage study.
Eur J Cancer.
1994;
30 A
344-350
- 24 IARC Working Group on the Evaluation of Cancer-Preventive Agents .Weight Control
and Physical Activity, IARC Handbooks of Cancer Prevention, Volume 6. Lyon, France;
IARC 2002
- 25
van den Brandt P A, Spiegelman D, Yaun S S, Adami H O, Beeson L, Folsom A R, Fraser G,
Goldbohm R A, Graham S, Kushi L, Marshall J R, Miller A B, Rohan T, Smith-Warner S A,
Speizer F E, Willett W C, Wolk A, Hunter D J.
Pooled analysis of prospective cohort studies on height, weight, and breast cancer
risk.
Am J Epidemiol.
2000;
152
514-527
- 26
Paffenbarger Jr R S, Kampert J B, Chang H G.
Characteristics that predict risk of breast cancer before and after the menopause.
Am J Epidemiol.
1980;
112
258-268
- 27
Swanson C A, Coates R J, Schoenberg J B, Malone K E, Gammon M D, Stanford J L, Shorr I J,
Potischman N A, Brinton L A.
Body size and breast cancer risk among women under age 45 years.
Am J Epidemiol.
1996;
143
698-706
- 28
Franceschi S, Favero A, La Vecchia C, Baron A E, Negri E, Dal Maso L, Giacosa A, Montella M,
Conti E, Amadori D.
Body size indices and breast cancer risk before and after menopause.
Int J Cancer.
1996;
67
181-186
- 29
Ursin G, Longnecker M P, Haile R W, Greenland S.
A meta-analysis of body mass index and risk of premenopausal breast cancer.
Epidemiology.
1995;
6
137-141
- 30
Potischman N, Swanson C A, Siiteri P, Hoover R N.
Reversal of relation between body mass and endogenous estrogen concentrations with
menopausal status.
J Natl Cancer Inst.
1996;
88
756-758
- 31
Lahmann P H, Schulz M, Hoffmann K, Boeing H, Tjonneland A, Olsen A, Overvad K, Key T J,
Allen N E, Khaw K T, Bingham S, Berglund G, Wirfalt E, Berrino F, Krogh V, Trichopoulou A,
Lagiou P, Trichopoulos D, Kaaks R, Riboli E.
Long-term weight change and breast cancer risk: the European prospective investigation
into cancer and nutrition (EPIC).
Br J Cancer.
2005;
93
582-589
- 32
Chang S, Buzdar A U, Hursting S D.
Inflammatory breast cancer and body mass index.
J Clin Oncol.
1998;
16
3731-3735
- 33
Harvie M, Hooper L, Howell A H.
Central obesity and breast cancer risk: a systematic review.
Obes Rev.
2003;
4
157-173
- 34
Mannisto S, Pietinen P, Pyy M, Palmgren J, Eskelinen M, Uusitupa M.
Body-size indicators and risk of breast cancer according to menopause and estrogen-receptor
status.
Int J Cancer.
1996;
68
8-13
- 35
Collaborative Group on Hormonal Factors in Breast Cancer .
Breast cancer and hormone replacement therapy: collaborative reanalysis of data from
51 epidemiological studies of 52705 women with breast cancer and 108411 women without
breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer.
Lancet.
1997;
350
1047-1059
- 36
Petrelli J M, Calle E E, Rodriguez C, Thun M J.
Body mass index, height, and postmenopausal breast cancer mortality in a prospective
cohort of US women.
Cancer Causes Control.
2002;
13
325-332
- 37
Feigelson H S, Jonas C R, Teras L R, Thun M J, Calle E E.
Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast
cancer in a large prospective study.
Cancer Epidemiol Biomarkers Prev.
2004;
13
220-224
- 38
Schapira D V, Kumar N B, Lyman G H.
Estimate of breast cancer risk reduction with weight loss.
Cancer.
1991;
67
2622-2625
- 39
Evans R M.
The steroid and thyroid hormone receptor superfamily.
Science.
1988;
240
889-895
- 40
Klotz D M, Hewitt S C, Ciana P, Raviscioni M, Lindzey J K, Foley J, Maggi A, DiAugustine R P,
Korach K S.
Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF‐1)-induced
uterine responses and in vivo evidence for IGF‐1/estrogen receptor cross-talk.
J Biol Chem.
2002;
277
8531-8537
- 41
Macaluso M, Cinti C, Russo G, Russo A, Giordano A.
pRb2/p 130-E2F4/5-HDAC1-SUV39H1-p 300 and pRb2/p 130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular
complexes mediate the transcription of estrogen receptor-alpha in breast cancer.
Oncogene.
2003;
22
3511-3517
- 42
Henderson B E, Ross R, Bernstein L.
Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award
lecture.
Cancer Res.
1988;
48
246-253
- 43
Feigelson H S, Ross R K, Yu M C, Coetzee G A, Reichardt J K, Henderson B E.
Genetic susceptibility to cancer from exogenous and endogenous exposures.
J Cell Biochem Suppl .
1996;
25
15-22
- 44
Foster J S, Wimalasena J.
Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein
phosphorylation in breast cancer cells.
Mol Endocrinol.
1996;
10
488-498
- 45
Prall O W, Sarcevic B, Musgrove E A, Watts C K, Sutherland R L.
Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied
by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor
association with cyclin E-Cdk2.
J Biol Chem.
1997;
272
10882-10894
- 46
Altucci L, Addeo R, Cicatiello L, Dauvois S, Parker M G, Truss M, Beato M, Sica V,
Bresciani F, Weisz A.
17beta-Estradiol induces cyclin D1 gene transcription, p 36D1-p 34cdk4 complex activation
and p 105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast
cancer cells.
Oncogene.
1996;
12
2315-2324
- 47
Planas-Silva M D, Weinberg R A.
Estrogen-dependent cyclin E-cdk2 activation through p 21 redistribution.
Mol Cell Biol.
1997;
17
4059-4069
- 48
Lupulescu A.
Estrogen use and cancer incidence: a review.
Cancer Invest.
1995;
13
287-295
- 49
Pike M C, Spicer D V, Dahmoush L, Press M F.
Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk.
Epidemiol Rev.
1993;
15
17-35
- 50
Rosner B, Colditz G A.
Nurses' health study: log-incidence mathematical model of breast cancer incidence.
J Natl Cancer Inst.
1996;
88
359-364
- 51
Clemons M, Goss P.
Estrogen and the risk of breast cancer.
N Engl J Med.
2001;
344
276-285
- 52
Bonney R C, Reed M J, Davidson K, Beranek P A, James V H.
The relationship between 17 beta-hydroxysteroid dehydrogenase activity and oestrogen
concentrations in human breast tumours and in normal breast tissue.
Clin Endocrinol (Oxf).
1983;
19
727-739
- 53
Blankenstein M A, Maitimu-Smeele I, Donker G H, Daroszewski J, Milewicz A, Thijssen J H.
On the significance of in situ production of oestrogens in human breast cancer tissue.
J Steroid Biochem Mol Biol.
1992;
41
891-896
- 54
Abul-Hajj Y J, Iverson R, Kiang D T.
Aromatization of androgens by human breast cancer.
Steroids.
1979;
33
205-222
- 55
Lipton A, Santner S J, Santen R J, Harvey H A, Feil P D, White-Hershey D, Bartholomew M J,
Antle C E.
Aromatase activity in primary and metastatic human breast cancer.
Cancer.
1987;
59
779-782
- 56
Dao T L, Hayes C, Libby P R.
Steroid sulfatase activities in human breast tumors.
Proc Soc Exp Biol Med.
1974;
146
381-384
- 57
Pasqualini J R, Gelly C, Lecerf F.
Estrogen sulfates: biological and ultrastructural responses and metabolism in MCF‐7
human breast cancer cells.
Breast Cancer Res Treat.
1986;
8
233-240
- 58
Pasqualini J R, Gelly C, Nguyen B L, Vella C.
Importance of estrogen sulfates in breast cancer.
J Steroid Biochem.
1989;
34
155-163
- 59
Pasqualini J R, Chetrite G, Blacker C, Feinstein M C, Delalonde L, Talbi M, Maloche C.
Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase
and aromatase activities in pre- and postmenopausal breast cancer patients.
J Clin Endocrinol Metab.
1996;
81
1460-1464
- 60
Loriaux D L, Ruder H J, Lipsett M B.
The measurement of estrone sulfate in plasma.
Steroids.
1971;
18
463-472
- 61
Pasqualini J R, Gelly C, Lecerf F.
Biological effects and morphological responses to estriol, estriol-3-sulfate, estriol-17-sulfate
and tamoxifen in a tamoxifen-resistant cell line (R‐27) derived from MCF‐7 human breast
cancer cells.
Eur J Cancer Clin Oncol.
1986;
22
1495-1501
- 62
Davidson B J, Gambone J C, Lagasse L D, Castaldo T W, Hammond G L, Siiteri P K, Judd H L.
Free estradiol in postmenopausal women with and without endometrial cancer.
J Clin Endocrinol Metab.
1981;
52
404-408
- 63
Vignon F, Terqui M, Westley B, Derocq D, Rochefort H.
Effects of plasma estrogen sulfates in mammary cancer cells.
Endocrinology.
1980;
106
1079-1086
- 64
MacIndoe J H.
The hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate by MCF‐7 human
breast cancer cells.
Endocrinology.
1988;
123
1281-1287
- 65
Pasqualini J R, Maloche C, Maroni M, Chetrite G.
Effect of the progestagen promegestone (R-5020) on mRNA of the oestrone sulphatase
in the MCF‐7 human mammary cancer cells.
Anticancer Res.
1994;
14
1589-1593
- 66
Utsumi T, Yoshimura N, Takeuchi S, Maruta M, Maeda K, Harada N.
Elevated steroid sulfatase expression in breast cancers.
J Steroid Biochem Mol Biol.
2000;
73
141-145
- 67
Falany J L, Falany C N.
Expression of cytosolic sulfotransferases in normal mammary epithelial cells and breast
cancer cell lines.
Cancer Res.
1996;
56
1551-1555
- 68
Falany C N, Wheeler J, Oh T S, Falany J L.
Steroid sulfation by expressed human cytosolic sulfotransferases.
J Steroid Biochem Mol Biol.
1994;
48
369-375
- 69
Malet C, Gompel A, Yaneva H, Cren H, Fidji N, Mowszowicz I, Kuttenn F, Mauvais-Jarvis P.
Estradiol and progesterone receptors in cultured normal human breast epithelial cells
and fibroblasts: immunocytochemical studies.
J Clin Endocrinol Metab.
1991;
73
8-17
- 70
Singh A, Purohit A, Duncan L J, Mokbel K, Ghilchik M W, Reed M J.
Control of aromatase activity in breast tumours: the role of the immune system.
J Steroid Biochem Mol Biol.
1997;
61
185-192
- 71
Reed M J, Owen A M, Lai L C, Coldham N G, Ghilchik M W, Shaikh N A, James V H.
In situ oestrone synthesis in normal breast and breast tumour tissues: effect of treatment
with 4-hydroxyandrostenedione.
Int J Cancer.
1989;
44
233-237
- 72
Yue W, Wang J P, Hamilton C J, Demers L M, Santen R J.
In situ aromatization enhances breast tumor estradiol levels and cellular proliferation.
Cancer Res.
1998;
58
927-932
- 73
Czyzyk A, Szczepanik Z.
Diabetes mellitus and cancer.
Eur J Intern Med.
2000;
11
245-252
- 74
Verkasalo P K, Thomas H V, Appleby P N, Davey G K, Key T J.
Circulating levels of sex hormones and their relation to risk factors for breast cancer:
a cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom).
Cancer Causes Control.
2001;
12
47-59
- 75
Matsuzawa Y, Funahashi T, Nakamura T.
Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived
bioactive substances.
Ann N Y Acad Sci.
1999;
892
146-154
- 76
Scherer P E, Williams S, Fogliano M, Baldini G, Lodish H F.
A novel serum protein similar to C1 q, produced exclusively in adipocytes.
J Biol Chem.
1995;
270
26746-26749
- 77
Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T,
Tenner A J, Tomiyama Y, Matsuzawa Y.
Adiponectin, a new member of the family of soluble defense collagens, negatively regulates
the growth of myelomonocytic progenitors and the functions of macrophages.
Blood.
2000;
96
1723-1732
- 78
Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M,
Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y.
Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding
protein and regulates growth factor-induced common postreceptor signal in vascular
smooth muscle cell.
Circulation.
2002;
105
2893-2898
- 79
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K,
Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman M L, Kagechika H,
Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T.
The fat-derived hormone adiponectin reverses insulin resistance associated with both
lipoatrophy and obesity.
Nat Med.
2001;
7
941-946
- 80
Berg A H, Combs T P, Du X, Brownlee M, Scherer P E.
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.
Nat Med.
2001;
7
947-953
- 81
Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H,
Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M,
Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y.
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2
diabetic patients.
Arterioscler Thromb Vasc Biol.
2000;
20
1595-1599
- 82
Yang W S, Lee W J, Funahashi T, Tanaka S, Matsuzawa Y, Chao C L, Chen C L, Tai T Y,
Chuang L M.
Plasma adiponectin levels in overweight and obese Asians.
Obes Res.
2002;
10
1104-1110
- 83
Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe D M, Papadiamantis Y,
Markopoulos C, Spanos E, Chrousos G, Trichopoulos D.
Adiponectin and breast cancer risk.
J Clin Endocrinol Metab.
2004;
89
1102-1107
- 84
Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, Noguchi S.
Association of serum adiponectin levels with breast cancer risk.
Clin Cancer Res.
2003;
9
5699-5704
- 85
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M.
Positional cloning of the mouse obese gene and its human homologue.
Nature.
1994;
372
425-432
- 86
Sinha M K, Opentanova I, Ohannesian J P, Kolaczynski J W, Heiman M L, Hale J, Becker G W,
Bowsher R R, Stephens T W, Caro J F.
Evidence of free and bound leptin in human circulation. Studies in lean and obese
subjects and during short-term fasting.
J Clin Invest.
1996;
98
1277-1282
- 87
McGregor G P, Desaga J F, Ehlenz K, Fischer A, Heese F, Hegele A, Lammer C, Peiser C,
Lang R E.
Radiommunological measurement of leptin in plasma of obese and diabetic human subjects.
Endocrinology.
1996;
137
1501-1504
- 88
Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panno M L, Ando S.
Leptin enhances, via AP‐1, expression of aromatase in the MCF‐7 cell line.
J Biol Chem.
2003;
278
28668-28676
- 89
O'brien S N, Welter B H, Price T M.
Presence of leptin in breast cell lines and breast tumors.
Biochem Biophys Res Commun.
1999;
259
695-698
- 90
Hu X, Juneja S C, Maihle N J, Cleary M P.
Leptin - a growth factor in normal and malignant breast cells and for normal mammary
gland development.
J Natl Cancer Inst.
2002;
94
1704-1711
- 91
Cleary M P, Juneja S C, Phillips F C, Hu X, Grande J P, Maihle N J.
Leptin receptor-deficient MMTV‐TGF-alpha/Lepr(db)Lepr(db) female mice do not develop
oncogene-induced mammary tumors.
Exp Biol Med (Maywood).
2004;
229
182-193
- 92
Tessitore L, Vizio B, Jenkins O, De Stefano I, Ritossa C, Argiles J M, Benedetto C,
Mussa A.
Leptin expression in colorectal and breast cancer patients.
Int J Mol Med.
2000;
5
421-426
- 93
Mantzoros C S, Bolhke K, Moschos S, Cramer D W.
Leptin in relation to carcinoma in situ of the breast: a study of pre-menopausal cases
and controls.
Int J Cancer.
1999;
80
523-526
- 94
Lind D S, Tuttle T M, Bethke K P, Frank J L, McCrady C W, Bear H D.
Expansion and tumour specific cytokine secretion of bryostatin-activated T-cells from
cryopreserved axillary lymph nodes of breast cancer patients.
Surg Oncol.
1993;
2
273-82
- 95
Rozen F, Zhang J, Pollak M.
Antiproliferative action of tumor necrosis factor-alpha on MCF‐7 breast cancer cells
is associated with increased insulin-like growth factor binding protein-3 accumulation.
Int J Oncol.
1998;
13
865-869
- 96
Pagliacci M C, Fumi G, Migliorati G, Grignani F, Riccardi C, Nicoletti I.
Cytostatic and cytotoxic effects of tumor necrosis factor alpha on MCF‐7 human breast
tumor cells are differently inhibited by glucocorticoid hormones.
Lymphokine Cytokine Res.
1993;
12
439-447
- 97
Purohit A, Reed M J.
Regulation of estrogen synthesis in postmenopausal women.
Steroids.
2002;
67
979-983
- 98
Fajardo L F, Kwan H H, Kowalski J, Prionas S D, Allison A C.
Dual role of tumor necrosis factor-alpha in angiogenesis.
Am J Pathol.
1992;
140
539-544
- 99
Weitsman G E, Ravid A, Liberman U A, Koren R.
Vitamin D enhances caspase-dependent and ‐independent TNFalpha-induced breast cancer
cell death: The role of reactive oxygen species and mitochondria.
Int J Cancer.
2003;
106
178-186
- 100
Lee P P, Hwang J J, Murphy G, Ip M M.
Functional significance of MMP‐9 in tumor necrosis factor-induced proliferation and
branching morphogenesis of mammary epithelial cells.
Endocrinology.
2000;
141
3764-3773
- 101
Leek R D, Landers R, Fox S B, Ng F, Harris A L, Lewis C E.
Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase
expression in invasive breast carcinoma.
Br J Cancer.
1998;
77
2246-2251
- 102
Meisser A, Cameo P, Islami D, Campana A, Bischof P.
Effects of interleukin-6 (IL‐6) on cytotrophoblastic cells.
Mol Hum Reprod.
1999;
5
1055-1058
- 103
Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, Huget P, Dirix L Y.
Circulating interleukin-6 predicts survival in patients with metastatic breast cancer.
Int J Cancer.
2003;
103
642-646
- 104
DECODE Study Group .
Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13
European cohorts.
Diabetes Care.
2003;
26
61-69
- 105
Weiderpass E, Gridley G, Persson I, Nyren O, Ekbom A, Adami H O.
Risk of endometrial and breast cancer in patients with diabetes mellitus.
Int J Cancer.
1997;
71
360-363
- 106
Milazzo G, Giorgino F, Damante G, Sung C, Stampfer M R, Vigneri R, Goldfine I D, Belfiore A.
Insulin receptor expression and function in human breast cancer cell lines.
Cancer Res.
1992;
52
3924-3930
- 107
Yenush L, White M F.
The IRS-signalling system during insulin and cytokine action.
Bioessays.
1997;
19
491-500
- 108
Jackson J G, White M F, Yee D.
Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like
growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast
cancer cells.
J Biol Chem.
1998;
273
9994-10003
- 109
Lai A, Sarcevic B, Prall O W, Sutherland R L.
Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2
activation and cell Cycle progression in MCF‐7 breast cancer cells through differential
regulation of cyclin E and p 21(WAF1/Cip1).
J Biol Chem.
2001;
276
25823-25833
- 110
Goodwin P J, Ennis M, Pritchard K I, Trudeau M E, Koo J, Madarnas Y, Hartwick W, Hoffman B,
Hood N.
Fasting insulin and outcome in early-stage breast cancer: results of a prospective
cohort study.
J Clin Oncol.
2002;
20
42-51
- 111
Godden J, Leake R, Kerr D J.
The response of breast cancer cells to steroid and peptide growth factors.
Anticancer Res.
1992;
12
1683-1688
- 112
Chappell J, Leitner J W, Solomon S, Golovchenko I, Goalstone M L, Draznin B.
Effect of insulin on cell cycle progression in MCF‐7 breast cancer cells. Direct and
potentiating influence.
J Biol Chem.
2001;
276
38023-38028
- 113
Sepp-Lorenzino L, Rosen N, Lebwohl D E.
Insulin and insulin-like growth factor signaling are defective in the MDA MB‐468 human
breast cancer cell line.
Cell Growth Differ.
1994;
5
1077-1083
- 114
Wolf I, Seger R.
The mitogen-activated protein kinase signaling cascade: from bench to bedside.
Isr Med Assoc J.
2002;
4
641-647
- 115
Papa V, Reese C C, Brunetti A, Vigneri R, Siiteri P K, Goldfine I D.
Progestins increase insulin receptor content and insulin stimulation of growth in
human breast carcinoma cells.
Cancer Res.
1990;
50
7858-7862
- 116
Webster N J, Resnik J L, Reichart D B, Strauss B, Haas M, Seely B L.
Repression of the insulin receptor promoter by the tumor suppressor gene product p
53: a possible mechanism for receptor overexpression in breast cancer.
Cancer Res.
1996;
56
2781-2788
- 117
Frittitta L, Cerrato A, Sacco M G, Weidner N, Goldfine I D, Vigneri R.
The insulin receptor content is increased in breast cancers initiated by three different
oncogenes in transgenic mice.
Breast Cancer Res Treat.
1997;
45
141-147
- 118
Frittitta L, Vigneri R, Stampfer M R, Goldfine I D.
Insulin receptor overexpression in 184B5 human mammary epithelial cells induces a
ligand-dependent transformed phenotype.
J Cell Biochem.
1995;
57
666-669
- 119
Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli G B,
Brand R, Goldfine I D, Vigneri R.
Elevated insulin receptor content in human breast cancer.
J Clin Invest.
1990;
86
1503-1510
- 120
Renehan A G, Zwahlen M, Minder C, O'Dwyer S T, Shalet S M, Egger M.
Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic
review and meta-regression analysis.
Lancet.
2004;
363
1346-1353
- 121
Rubin R, Baserga R.
Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis,
and tumorigenicity.
Lab Invest.
1995;
73
311-331
- 122
Takahashi T, Ohmichi M, Kawagoe J, Ohshima C, Doshida M, Ohta T, Saitoh M, Mori-Abe A,
Du B, Igarashi H, Takahashi K, Kurachi H.
Growth factors change nuclear distribution of estrogen receptor-{alpha} via MAP kinase
or PI3 kinase cascade in a human breast cancer cell line.
Endocrinology.
2005;
146
4082-4089
- 123
Clemmons D R, Underwood L E.
Nutritional regulation of IGF‐I and IGF binding proteins.
Annu Rev Nutr.
1991;
11
393-412
- 124
Hankinson S E, Willett W C, Colditz G A, Hunter D J, Michaud D S, Deroo B, Rosner B,
Speizer F E, Pollak M.
Circulating concentrations of insulin-like growth factor-I and risk of breast cancer.
Lancet.
1998;
351
1393-1396
- 125
Krajcik R A, Borofsky N D, Massardo S, Orentreich N.
Insulin-like growth factor I (IGF‐I), IGF-binding proteins, and breast cancer.
Cancer Epidemiol Biomarkers Prev.
2002;
11
1566-1573
- 126
Siddle K, Urso B, Niesler C A, Cope D L, Molina L, Surinya K H, Soos M A.
Specificity in ligand binding and intracellular signalling by insulin and insulin-like
growth factor receptors.
Biochem Soc Trans.
2001;
29(Pt 4)
513-525
- 127
Bergh C, Carlsson B, Olsson J H, Selleskog U, Hillensjo T.
Regulation of androgen production in cultured human thecal cells by insulin-like growth
factor I and insulin.
Fertil Steril.
1993;
59
323-331
- 128
Fottner C, Engelhardt D, Weber M M.
Regulation of steroidogenesis by insulin-like growth factors (IGFs) in adult human
adrenocortical cells: IGF‐I and, more potently, IGF‐II preferentially enhance androgen
biosynthesis through interaction with the IGF‐I receptor and IGF-binding proteins.
J Endocrinol.
1998;
158
409-417
- 129
Fay M P, Freedman L S, Clifford C K, Midthune D N.
Effect of different types and amounts of fat on the development of mammary tumors
in rodents: a review.
Cancer Res.
1997;
57
3979-3988
- 130
Rose D P.
Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro
experiments and animal studies.
Am J Clin Nutr.
1997;
66
1513S-1522S
- 131
Hardy S, Langelier Y, Prentki M.
Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces
apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects.
Cancer Res.
2000;
60
6353-6358
- 132
Kaplan D R, Whitman M, Schaffhausen B, Pallas D C, White M, Cantley L, Roberts T M.
Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein
and phosphatidylinositol kinase activity.
Cell.
1987;
50
1021-1029
- 133
Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y.
Saturated fatty acid-induced apoptosis in MDA‐MB‐231 breast cancer cells. A role for
cardiolipin.
J Biol Chem.
2003;
278
31861-31870
- 134
Choi S, Swanson J M.
Interaction of cytochrome c with cardiolipin: an infrared spectroscopic study.
Biophys Chem.
1995;
54
271-278
- 135
Pardoll D.
T cells and tumours.
Nature.
2001;
411
1010-1012
- 136
Richieri G V, Mescher M F, Kleinfeld A M.
Short term exposure to cis unsaturated free fatty acids inhibits degranulation of
cytotoxic T lymphocytes.
J Immunol.
1990;
144
671-677
- 137
Kleinfeld A M, Okada C.
Free fatty acid release from human breast cancer tissue inhibits cytotoxic T lymphocyte-mediated
killing.
J Lipid Res.
2005;
46
1983-1990
- 138
El-Sohemy A, Archer M C.
Inhibition of N-methyl-N-nitrosourea- and 7,12-dimethylbenz[a] anthracene-induced
rat mammary tumorigenesis by dietary cholesterol is independent of Ha-Ras mutations.
Carcinogenesis.
2000;
21
827-831
- 139
Bennis F, Favre G, Le Gaillard F, Soula G.
Importance of mevalonate-derived products in the control of HMG‐CoA reductase activity
and growth of human lung adenocarcinoma cell line A549.
Int J Cancer.
1993;
55
640-645
- 140
Kawata S, Takaishi K, Nagase T, Ito N, Matsuda Y, Tamura S, Matsuzawa Y, Tarui S.
Increase in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in
human hepatocellular carcinoma: possible mechanism for alteration of cholesterol biosynthesis.
Cancer Res.
1990;
50
3270-3273
- 141
Quesney-Huneeus V, Wiley M H, Siperstein M D.
Essential role for mevalonate synthesis in DNA replication.
Proc Natl Acad Sci U S A.
1979;
76
5056-5060
- 142
Duncan R E, El-Sohemy A, Archer M C.
Mevalonate promotes the growth of tumors derived from human cancer cells in vivo and
stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity.
J Biol Chem.
2004;
279
33079-33084
- 143
Keyomarsi K, Sandoval L, Band V, Pardee A B.
Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin.
Cancer Res.
1991;
51
3602-3609
- 144
Melhem M F, Gabriel H F, Eskander E D, Rao K N.
Cholestyramine promotes 7,12-dimethylbenzanthracene induced mammary cancer in Wistar
rats.
Br J Cancer.
1987;
56
45-48
- 145
Rao K N, Melhem M F, Gabriel H F, Eskander E D, Kazanecki M E, Amenta J S.
Lipid composition and de novo cholesterogenesis in normal and neoplastic rat mammary
tissues.
J Natl Cancer Inst.
1988;
80
1248-1253
- 146
Rotheneder M, Kostner G M.
Effects of low- and high-density lipoproteins on the proliferation of human breast
cancer cells in vitro: differences between hormone-dependent and hormone-independent
cell lines.
Int J Cancer.
1989;
43
875-879
- 147
Cao W M, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, Niimi M, Miyauchi A, Wong N C,
Ishida T.
A mutant high-density lipoprotein receptor inhibits proliferation of human breast
cancer cells.
Cancer Res.
2004;
64
1515-1521
- 148
Gregorio D I, Emrich L J, Graham S, Marshall J R, Nemoto T.
Dietary fat consumption and survival among women with breast cancer.
J Natl Cancer Inst.
1985;
75
37-41
- 149
Zhang S, Folsom A R, Sellers T A, Kushi L H, Potter J D.
Better breast cancer survival for postmenopausal women who are less overweight and
eat less fat. The Iowa Women's Health Study.
Cancer.
1995;
76
275-283
- 150
Kyogoku S, Hirohata T, Nomura Y, Shigematsu T, Takeshita S, Hirohata I.
Diet and prognosis of breast cancer.
Nutr Cancer.
1992;
17
271-277
- 151
Kaaks R.
Lundin E, Manjer J, Rinaldi S, Biessy C, Soderberg S, Lenner P, Janzon L, Riboli E,
Berglund G, Hallmans G. Prospective study of IGF‐I, IGF- binding proteins, and breast
cancer risk, in Northern and Southern Sweden.
Cancer Causes Control.
2002;
13
307-316
- 152
Schairer C, Hill D, Sturgeon S, Fears T, Pollak M, Mies C, Ziegler R, Hoover R, Sherman M.
Serum concentration of IGF‐I, IGFBP‐3 and C-peptide and risk of hyperplasia and cancer
of the breast in postmenopausal women.
Int J Cancer.
2004;
108
773-779
- 153
Dale K M, Coleman C I, Henyan N N, Kluger J, White C M.
Statins and cancer risk: a meta-analysis.
JAMA.
2006;
295
74-80
- 154
Zhu B T, Connery A H.
Is 2-methoxyestradiol an endogenous metabolite that inhibits mammary carcinogenesis?.
Cancer Res.
1998;
58
2269-2277
- 155
Seeger H, Wallwiener D, Kraemer E, Mueck A O.
Comparison of possible carcinogenic estradiol metabolites: Effects on proliferation,
apoptosis and metastasis of human breast cancer cells.
Maturitas.
2006;
54 (1)
72-77
- 156
Seeger H, Wallwiener D, Mueck A O.
Different effects of estradiol and various antiestrogens on TNF-alpha-induced changes
of biochemical markers for growth and invasion of human breast cancer cells.
Life Sci.
2006;
78 (13)
1464-1468
Prof. Dr. O. Ortmann
Klinik für Frauenheilkunde und Geburtshilfe
Universität Regensburg
Landshuter Str. 65
93053 Regensburg
eMail: gynaekologie@caritasstjosef.de