Thorac Cardiovasc Surg 2007; 55(1): 24-31
DOI: 10.1055/s-2006-924621
Original Cardiovascular

© Georg Thieme Verlag KG Stuttgart · New York

Granulocyte-Macrophage Colony-Stimulating Factor (GM‐CSF) Restores Decreased Monocyte HLA‐DR Expression after Cardiopulmonary Bypass

J. Börgermann1 , 3 , I. Friedrich1 , R. Scheubel1 , O. Kuss2 , S. Lendemans3 , R.-E. Silber1 , E. Kreuzfelder4 , S. Flohé3
  • 1Cardiac and Thoracic Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany
  • 2Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
  • 3Trauma Surgery, Study Group for Surgical Research, University Hospital of Essen, Essen, Germany
  • 4Institute of Immunology, University Hospital of Essen, Essen, Germany
Further Information

Publication History

received Dec 28, 2005

Publication Date:
06 February 2007 (online)

Abstract

Objectives: Cardiopulmonary bypass (CPB) is associated with a disturbed immune response, e.g., impaired HLA‐DR expression on monocytes and the release of pro- and anti-inflammatory cytokines. Cytokine release plays a role in the pathogenesis of postoperative systemic inflammatory response syndrome (SIRS) and immune system deterioration, e.g., impaired monocyte and polymorphonuclear neutrophil (PMN) function, factors that ultimately lead to an increased susceptibility to infections. To gain a further understanding, we investigated HLA‐DR expression on monocytes and on B- and T-lymphocytes. In addition, we investigated the in vitro effect of the immunostimulating hematopoietic growth factor granulocyte-macrophage colony-stimulating factor (GM‐CSF) on HLA‐DR expression of these cell types. Neither HLA‐DR expression on B- and T-lymphocytes nor the effects of GM‐CSF in cardiac surgical patients have been studied before. Methods: In 16 patients undergoing elective cardiac surgery with CPB, counts of circulating leukocyte subsets as well as HLA‐DR expression on monocytes, B- and T-lymphocytes were measured by flow cytometry before, immediately after CPB, and on the 2nd and 10th postoperative days. Treatment with GM‐CSF was performed in vitro in whole blood cultures with 100 ng/ml recombinant human GM‐CSF for 20 h. Results: Monocyte HLA‐DR expression was attenuated immediately after CPB (125 ± 4 mean channel fluorescence [MCF] vs. 143 ± 2 MCF preoperatively, mean ± SEM, p < 0.001). HLA‐DR expression further decreased on the 2nd day after CPB and did not normalize until the 10th day after the operation. In contrast, HLA‐DR expression on T-cells was unchanged, whereas HLA‐DR expression on B-cells did not decrease before the 2nd day after CPB (152 ± 3 MCF vs. 170 ± 2 MCF preoperatively, p < 0.001). In vitro GM‐CSF treatment increased HLA‐DR expression on monocytes prepared after CPB to a degree comparable to preoperative values. HLA‐DR expression on B-lymphocytes could not be restored by GM‐CSF. Conclusions: Immune system suppression after cardiac surgery is reflected in prolonged diminished HLA‐DR expression on monocytes and B-lymphocytes. Suppression is not irreversible but can - at least in vitro - be overridden by the immunostimulating compound GM‐CSF.

References

  • 1 Laffey J G, Boylan J F, Cheng D C. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist.  Anesthesiology. 2002;  97 215-252
  • 2 Naldini A, Borrelli E, Cesari S. et al . In vitro cytokine production and T-cell proliferation in patients undergoing cardiopulmonary by-pass.  Cytokine. 1995;  7 165-170
  • 3 Kleinschmidt S, Wanner G A, Bussmann D. et al . Proinflammatory cytokine gene expression in whole blood from patients undergoing coronary artery bypass surgery and its modulation by pentoxifylline.  Shock. 1998;  9 12-20
  • 4 Börgermann J, Friedrich I, Flohé S. et al . Tumor necrosis factor-alpha production in whole blood after cardiopulmonary bypass: downregulation caused by circulating cytokine-inhibitory activities.  J Thorac Cardiovasc Surg. 2002;  124 608-617
  • 5 Hiesmayr M J, Spittler A, Lassnigg A. et al . Alterations in the number of circulating leucocytes, phenotype of monocyte and cytokine production in patients undergoing cardiothoracic surgery.  Clin Exp Immunol. 1999;  115 315-323
  • 6 Rinder C S, Mathew J P, Rinder H M. et al . Lymphocyte and monocyte subset changes during cardiopulmonary bypass: effects of aging and gender.  J Lab Clin Med. 1997;  129 592-602
  • 7 van der Poll T, Jansen J, Endert E. et al . Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood.  Infect Immun. 1994;  62 2046-2050
  • 8 van der Poll T, Coyle S M, Barbosa K. et al . Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia.  J Clin Invest. 1996;  97 713-719
  • 9 Munoz C, Carlet J, Fitting C. et al . Dysregulation of in vitro cytokine production by monocytes during sepsis.  J Clin Invest. 1991;  88 1747-1754
  • 10 Majetschak M, Flach R, Kreuzfelder E. et al . The extent of traumatic damage determines a graded depression of the endotoxin responsiveness of peripheral blood mononuclear cells from patients with blunt injuries.  Crit Care Med. 1999;  27 313-318
  • 11 Ditschkowski M, Kreuzfelder E, Rebmann V. et al . HLA‐DR expression and soluble HLA‐DR levels in septic patients after trauma.  Ann Surg. 1999;  229 246-254
  • 12 Hershman M J, Cheadle W G, Wellhausen S R. et al . Monocyte HLA‐DR antigen expression characterizes clinical outcome in the trauma patient.  Br J Surg. 1990;  77 204-207
  • 13 Flohé S, Lendemans S, Selbach C. et al . Effect of granulocyte-macrophage colony-stimulating factor on the immune response of circulating monocytes after severe trauma.  Crit Care Med. 2003;  31 2462-2469
  • 14 Hayes M P, Freeman S L, Donnelly R P. IFN-gamma priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and MRNA stability.  Cytokine. 1995;  7 427-435
  • 15 Randow F, Docke W D, Bundschuh D S. et al . In vitro prevention and reversal of lipopolysaccharide desensitization by IFN-gamma, IL‐12, and granulocyte-macrophage colony-stimulating factor.  J Immunol. 1997;  158 2911-2918
  • 16 Docke W D, Randow F, Syrbe U. et al . Monocyte deactivation in septic patients: restoration by IFN-gamma treatment.  Nat Med. 1997;  3 678-681
  • 17 Flohé S, Börgermann J, Lim L. et al . Interferon-gamma counteracts reduced endotoxin responsiveness of whole blood following trauma and cardiopulmonary bypass.  J Endotoxin Res. 2000;  6 431-436
  • 18 Flohé S, Börgermann J, Dominguez F E. et al . Influence of granulocyte-macrophage colony-stimulating factor (GM‐CSF) on whole blood endotoxin responsiveness following trauma, cardiopulmonary bypass, and severe sepsis.  Shock. 1999;  12 17-24
  • 19 Kawasaki T, Ogata M, Kawasaki C. et al . Surgical stress induces endotoxin hyporesponsiveness and an early decrease of monocyte mCD14 and HLA‐DR expression during surgery.  Anesth Analg. 2001;  92 1322-1326
  • 20 Ditschkowski M, Kreuzfelder E, Majetschak M. et al . Reduced B cell HLA‐DR expression and natural killer cell counts in patients prone to sepsis after injury.  Eur J Surg. 1999;  165 1129-1133
  • 21 Allen M L, Peters M J, Goldman A. et al . Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care.  Crit Care Med. 2002;  30 1140-1145
  • 22 Strohmeyer J C, Blume C, Meisel C. et al . Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients.  Cytometry. 2003;  53 B 54-62
  • 23 Hornell T M, Beresford G W, Bushey A. et al . Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor.  J Immunol. 2003;  171 2374-2383
  • 24 Lee K Y, Suh B G, Kim J W. et al . Varying expression levels of colony stimulating factor receptors in disease states and different leukocytes.  Exp Mol Med. 2000;  32 210-215
  • 25 Nierhaus A, Montag B, Timmler N. et al . Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis.  Intensive Care Med. 2003;  29 646-651
  • 26 Bilgin K, Yaramis A, Haspolat K. et al . A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia.  Pediatrics. 2001;  107 36-41
  • 27 Meropol N J, Wood D E, Nemunaitis J. et al . Randomized, placebo-controlled, multicenter trial of granulocyte-macrophage colony-stimulating factor as infection prophylaxis in oncologic surgery. Leukine Surgical Prophylaxis Research Group.  J Clin Oncol. 1998;  16 1167-1173
  • 28 Presneill J J, Harris T, Stewart A G. et al . A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction.  Am J Respir Crit Care Med. 2002;  166 138-143
  • 29 Wu F P, Westphal J R, Hoekman K. et al . The effects of surgery, with or without rhGM‐CSF, on the angiogenic profile of patients treated for colorectal carcinoma.  Cytokine. 2004;  25 68-72
  • 30 Cottler-Fox M H, Lapidot T, Petit I. et al . Stem cell mobilization.  Hematology (Am Soc Hematol Educ Program). 2003;  419-437

MD Jochen Börgermann

Department of Cardiac and Thoracic Surgery
Martin-Luther-University Halle-Wittenberg

Ernst-Grube-Straße 40

06120 Halle

Germany

Email: Jochen.Boergermann@t-online.de

    >