Neuropediatrics 2006; 37(4): 209-221
DOI: 10.1055/s-2006-924734
Rapid Communication

© Georg Thieme Verlag KG Stuttgart · New York

Natural History of Canavan Disease Revealed by Proton Magnetic Resonance Spectroscopy (1H‐MRS) and Diffusion-weighted MRI

C. G. Janson1 , 2 , 5 , S. W. J. McPhee1 , J. Francis1 , D. Shera4 , M. Assadi2 , A. Freese5 , P. Hurh3 , J. Haselgrove3 , D. J. Wang3 , L. Bilaniuk3 , P. Leone1
  • 1UMDNJ-Robert Wood Johnson Medical School, Dept. of Neurosurgery, Camden, NJ, United States
  • 2UMDNJ-Robert Wood Johnson Medical School, Dept. of Neurology, Camden, NJ, United States
  • 3Children's Hospital of Philadelphia, Dept. of Neuroradiology, Philadelphia, PA, United States
  • 4Children's Hospital of Philadelphia, Dept. of Biostatistics, Philadelphia, PA, United States
  • 5University of Minnesota, Department of Neurosurgery, Minneapolis, MN, United States
Further Information

Publication History

Received: February 9, 2006

Accepted after Revision: September 18, 2006

Publication Date:
20 December 2006 (online)

Abstract

Canavan disease is a childhood leukodystrophy caused by mutations in the gene for human aspartoacylase (ASPA), which leads to an abnormal accumulation of the substrate molecule N-acetyl-aspartate (NAA) in the brain. This study was designed to model the natural history of Canavan disease using MRI and proton magnetic resonance spectroscopy (1H-MRS). NAA and various indices of brain structure (morphology, quantitative T1, fractional anisotropy, apparent diffusion coefficient) were measured in white and gray matter regions during the progression of Canavan disease. A mixed-effects statistical model was used to fit all outcome measures. Longitudinal data from 28 Canavan patients were directly compared in each brain region with reference data obtained from normal, age-matched pediatric subjects. The resultant model can be used to non-invasively monitor the natural history of Canavan disease or related leukodystrophies in future studies involving drug, gene therapy, or stem cell treatments.

References

  • 1 Anderson V M. et al . Magnetic resonance imaging measures of brain atrophy in multiple sclerosis.  JMRI. 2006;  23 605-618
  • 2 Ashwal S. et al . Proton spectroscopy detected myoinositol in children with traumatic brain injury.  Pediatric Research. 2004;  56 630-638
  • 3 Barker P B, Bryan R N, Kumar A J, Naidu S. Proton NMR spectroscopy of Canavan disease.  Neuropediatrics. 1992;  23 263-267
  • 4 Barkovich A J, Kjos B O, Jackson D E, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.  Radiology. 1988;  166 173-180
  • 5 Baslow M H, Suckow R F, Sapirstein V, Hungund B L. Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes.  J Mol Neurosci. 1999;  13 47-53
  • 6 Baslow M. Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation.  J Mol Neurosci. 2003;  21 185-190
  • 7 Bermel R A, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis.  Lancet Neurology. 2006;  5 158-170
  • 8 Bevington P R. Data Reduction and Error Analysis for the Physical Sciences. New York; McGraw Hill 1969
  • 9 Bhakoo K K, Craig T J, Styles P. Developmental and regional distribution of ASPA in rat brain tissue.  J Neurochem. 2001;  79 211-220
  • 10 Birken D L, Oldendorf W H. N-acteyl-L-aspartic acid: a literature review of a compound prominent in proton spectoscopic studies of brain.  Neuroscience & Biobehavioral Reviews. 1989;  13 23-31
  • 11 Bluml S. In vivo quantitation of cerebral metabolite concentrations using natural abundance 13C MRS at 1.5 T.  JMRI. 1999;  136 219-225
  • 12 Bottomley P A. Spatial localization in NMR spectroscopy in vivo.  Annals NY Acad Sci. 1987;  508 333-348
  • 13 Curatolo A. et al . Distribution of NAA and NAAG in nervous tissue.  J Neurochem. 1965;  12 339-342
  • 14 D'Adamo A F, Yatsu F M. Acetate metabolism in the nervous system: NAA and the biosynthesis of brain lipids.  J Neurochem. 1965;  13 961-965
  • 15 Engelbrecht V, Rassek M, Gartner J, Kahn T, Modder U. Magnetic resonance imaging and proton spectroscopy in two siblings with Canavan's disease.  Fortschr Rontgenstr. 1995;  163 238-244
  • 16 Goldstein F B. Aminhydrolases of brain; enzymatic hydrolysis of NAA and other N-acyl-amino acid.  J Neurochem. 1976;  26 45-49
  • 17 Haselgrove J, Moore J, Wang Z, Traipe E, and Bilaniuk L. A method for fast multislice T1 measurement: feasibility studies on phantoms, young children, and children with Canavan's disease.  J Magn Reson Imaging. 2000;  11 360-367
  • 18 Horska A, Kaufmann W E, Brant L J, Naidu S, Harris J C, Barker P B. In vivo quantitative proton MRSI study of brain development from childhood to adolescence.  J Magn Reson Imaging. 2002;  15 137-143
  • 19 Huppi P S. et al . Magnetic resonance in preterm and term newborns: 1H‐MRS in developing human brain.  Pediatric Research. 1991;  30 574-578
  • 20 Janson C, McPhee S WJ, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, Wang D J, Shera D, Hurh P, Rupin J, Saslow E, Goldfarb O, Goldberg M, Larijani G, Sharrar W, Liouterman L, Camp A, Kolodny E, Samulski J, Leone P. Gene therapy of Canavan disease: AAV2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain.  Human Gene Therapy. 2002;  13 1391-1412
  • 21 Janson C G, Assadi M, Francis J, Bilaniuk L, Shera D, Leone P. Lithium citrate for Canavan disease.  Pediatric Neurology. 2005;  33 235-243
  • 22 Janson C G, Janson C G, Kolodny E H, Zeng B J, Raghavan S, Pastores G, Torres P, Assadi M, McPhee S, Goldfarb O, Saslow B, Freese A, Wang D J, Bilaniuk L, Shera D, Leone P. Mild-onset presentation of Canavan disease associated with novel G212A point mutation in aspartoacylase gene.  Annals of Neurology. 2006;  59 428-431
  • 23 Kaul R. et al . Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease.  Nature Genetics. 1993;  5 118-123
  • 24 Kimani B F, Jacobowitz D M, Kallarakal A T, Namboodiri M AA. ASPA is restricted primarily to myelin-synthesizing cells in the CNS: therapeutic implications for Canavan disease.  Molec Brain Research. 2002;  107 176-182
  • 25 Kimani B F, Jacobowitz D M, Namboodiri M AA. Developmental increase of ASPA in oligodendrocytes parallels CNS myelination.  Dev Brain Research. 2003;  140 105-115
  • 26 Kingsley P B. Methods of measuring Spin-Lattice (T1) relaxation times: an annotated bibliography.  Concepts in Magnetic Resonance. 1999;  11 243-276
  • 27 Kreis R, Ernst T, Ross B D. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.  Magn Reson Med. 1993;  30 424-437
  • 28 Laird N M, Ware J H. Random-effects models for longitudinal data.  Biometrics. 1982;  38 963-974
  • 29 Lam W, Wang Z, Zhao H. et al . MRS of basal ganglia in childhood: a semiquantitative analysis.  Neuroradiology. 1998;  40 315-323
  • 30 Leone P, Janson C G, McPhee S J, During M J. Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease.  Curr Opin Molec Ther. 1999;  1 487-491
  • 31 Lu Z H, Chakraborty G, Ledeen R W, Yahya D, Wu G. N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain.  Brain Res Mol Brain Res. 2004;  17 71-78
  • 32 Madhavarao C N, Moffett J R, Moore R A, Viola R E, Namboodiri M AA, Jacobowitz D M. Immunohistochemical localization of ASPA in the rat central nervous system.  J Comp Neurol. 2004;  472 318-329
  • 33 McArdle C B, Richardson C J, Nicholas D A, Mirfakhraee M, Hayden C K, Amparo E G. Developmental features of the neonatal brain: MR imaging. Part I. Gray-white matter differentiation and myelination.  Radiology. 1987;  162 223-229
  • 34 McPhee S WJ, Janson C G. et al . Effects of AAV‐2 mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease.  Molecular Brain Research. 2005;  135 112-121
  • 35 Mehta V, Namboodiri M A. N-acetylaspartate as an acetyl source in the nervous system.  Brain Res Mol Brain Res. 1995;  31 151-157
  • 36 Michaelis T, Merboldt K D, Bruhn H, Hanicke W, Frahm J. Absolute concentration of metabolites in the adult human brain in vivo: Quantification of localized proton MR spectra.  Radiology. 1993;  187 219-227
  • 37 Miyake M, Kakimoto Y. Developmental changes of NAA, NAAG, and beta-citryl-L-glutamic acid and their distributions in the brain and other organs of various species of animals.  J Neurochem. 1981;  36 804-810
  • 38 Moffett J R, Namboodiri M A, Cangro C, Heale J. Immunohistochemical localization of NAA in the rat brain.  Neuroreport. 1991;  2 131-134
  • 39 Morriss M C, Zimmerman R A, Bilaniuk L, Hunter J V, Haselgrove J C. Changes in brain water diffusion during childhood.  Pediatric Neuroradiology. 1999;  41 929-934
  • 40 Patel T B, Clark J B. Synthesis of NAA by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport.  Biochem J. 1979;  184 539-546
  • 41 Provencher S W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra.  Magn Reson Med. 1993;  30 672-679
  • 42 Sager T N, Thomsen C, Valsborg J S, Laursen H, Hansen A J. Astroglia contain a specific transport mechanism for NAA.  J Neurochem. 1999;  73 807-811
  • 43 Schmithorst V J, Wilke M, Dardzinski B J, Holland S K. Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study.  Radiology. 2002;  222 212-218
  • 44 Steen R G, Gronemeyer S A, Taylor J. Age-related changes in proton T1 values of normal human brain.  JMRI. 1995;  5 43-48
  • 45 Steen R G, Ogg R J, Reddick W E, Kingsley P B. Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence.  AJNR Am J Neuroradiol. 1997;  18 819-828
  • 46 Simon J H. et al . A longitudinal study of brain atrophy in relapsing multiple sclerosis.  Neurology. 2004;  53 139-148
  • 47 Turner B. et al . Ventricular enlargement in multiple sclerosis: a comparison of three-dimensional and linear MRI estimates.  Neuroradiology. 2001;  43 608-614
  • 48 Tallan H H. Studies on the distribution of NAA in brain.  J Biol Chem. 1957;  224 41-45
  • 49 Tavazzi B, Lazzarino G, Leone P, Amorini A M, Bellia F, Janson C G. et al . Simultaneous HPLC separation of purines, pyrimadines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism.  Clinical Biochemistry. 2005;  38 997-1008
  • 50 Taylor D L, Davies S EC, Obrenovitch T P, Doheny M H, Patsalos P H, Clark J B, Symon L. Investigation into the role of NAA in cerebral osmoregulation.  J Neurochem. 1995;  65 275-281
  • 51 Toft P B, Geiss-Holtorff R, Rolland M O. et al . Magnetic resonance imaging in juvenile Canavan disease.  Eur J Pediatr. 1993;  152 750-753
  • 52 Urenjak J, Williams S R, Gadian D G, Noble M. Specific expression of NAA in neurons, oligodendrocyte-type-2 astrocyte precursors, and immature oligodendrocytes in vitro.  J Neurochem. 1992;  59 55-61
  • 53 Wittsack H J, Kugel H, Roth B, Heindel W. Quantitative measurements with localized proton spectroscopy in children with Canavan's disease.  J Magnetic Resonance Imaging. 1996;  6 889-893

Christopher G. Janson, MD

The National Endowment for Alzheimer's Research

Box 772

Fairfield, CT 06824

USA

Email: janson@memorymatters.org

    >