Rofo 2006; 178(8): 771-780
DOI: 10.1055/s-2006-926874
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Kontrastangehobene MRT und MSCT zur kardialen Vitalitätsdiagnostik

Contrast-Enhanced MR and MSCT for the Assessment of Myocardial ViabilityA. H. Mahnken1, 2 , R. W. Günther1 , G. Krombach1
  • 1Klinik für Radiologische Diagnostik, Universitätsklinikum RWTH Aachen
  • 2Angewandte Medizintechnik, Helmholtz-Institut der RWTH Aachen
Further Information

Publication History

eingereicht: 11.4.2006

angenommen: 24.4.2006

Publication Date:
24 July 2006 (online)

Zusammenfassung

Die Kernspintomographie (MRT) hat sich in den letzten Jahren zu einer Referenzmethode der myokardialen Vitalitätsdiagnostik entwickelt. Erst kürzlich konnte auch das Potenzial der Mehrschicht-Spiral-Computertomographie (MSCT) für die Vitalitätsdiagnostik gezeigt werden. In dieser Arbeit werden zunächst ausführlich die einer Myokardischämie folgenden pathophysiologischen Veränderungen des Herzmuskels einschließlich der Abgrenzung von stunned und hibernierendem Myokard dargestellt. Als grundlegender Ansatz der Vitalitätsdiagnostik in MRT und MSCT wird in der Hauptsache das Konzept der myokardialen Spätanreicherung betrachtet. Als weitere Ansätze werden die Infarktdiagnostik mittels Perfusionsbildgebung und alternativer Kontrastmittel vorgestellt. Die Beziehung zwischen pathophysiologischen Veränderungen und dem Erscheinungsbild in MRT und MSCT wird gezeigt. Die klinischen Konsequenzen der MRT- und MSCT-Befunde werden betrachtet.

Abstract

Over the last decade magnetic resonance (MR) imaging has become a well-established method for visualizing myocardial viability. Multislice spiral computed tomography (MSCT) has also recently proven to be a reliable method for assessing the myocardium for this indication. This review extensively describes the changes in acute and chronic myocardial infarction including the differentiation of stunned or hibernating myocardium. This review focuses on delayed myocardial contrast enhancement as a key concept of viability imaging. Myocardial perfusion imaging as well as the use of alternative contrast agents are introduced. Pathophysiology is correlated to the changes observed in MR imaging and MSCT. The clinical impact of the imaging findings is described.

Literatur

  • 1 Hammermeister K E, DeRouen T A, Dodge H T. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations.  Circulation. 1979;  59 421-430
  • 2 Gersh B J, Anderson J L. Thrombolysis and myocardial salvage. Results of clinical trials and the animal paradigm - paradoxic or predictable?.  Circulation. 1993;  88 296-306
  • 3 American H eart Association. Heart Disease and Stroke Statistics - 2006 Update. Dallas, Texas; 2006
  • 4 Hachamovitch R, Hayes S W, Friedman J D. et al . Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography.  Circulation. 2003;  107 2900-2907
  • 5 Allman K C, Shaw L J, Hachamovitch R. et al . Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis.  J Am Coll Cardiol. 2002;  39 1151-1158
  • 6 Kloner R A, Bolli R, Marban E. et al . Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop.  Circulation. 1998;  97 1848-1867
  • 7 Wu K C, Lima J A. Noninvasive imaging of myocardial viability: current techniques and future developments.  Circ Res. 2003;  93 1146-1158
  • 8 Kramer P H, Goldstein J A, Herkens R J. et al . Imaging of acute myocardial infarction in man with contrast-enhanced computed transmission tomography.  Am Heart J. 1984;  108 1514-1523
  • 9 Mahnken A H, Koos R, Katoh M. et al . Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging.  J Am Coll Cardiol. 2005;  45 2042-2047
  • 10 Braunwald E, Kloner R A. The stunned myocardium: prolonged, postischemic ventricular dysfunction.  Circulation. 1982;  66 1146-1149
  • 11 Heyndrickx G R, Millard R W, McRitchie R J. et al . Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs.  J Clin Invest. 1975;  56 978-985
  • 12 Nixon J V, Brown C N, Smitherman T C. Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography.  Circulation. 1982;  65 1497-1503
  • 13 Breisblatt W M, Stein K L, Wolfe C J. et al . Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery.  J Am Coll Cardiol. 1990;  15 1261-1269
  • 14 Gao W D, Liu Y, Mellgren R. et al . Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis?.  Circ Res. 1996;  78 455-465
  • 15 McDonald K S, Moss R L, Miller W P. Incorporation of the troponin regulatory complex of post-ischemic stunned porcine myocardium reduces myofilament calcium sensitivity in rabbit psoas skeletal muscle fibers.  J Mol Cell Cardiol. 1998;  30 285-296
  • 16 Rahimtoola S H. The hibernating myocardium.  Am Heart J. 1989;  117 211-221
  • 17 Elsasser A, Schlepper M, Klovekorn W P. et al . Hibernating myocardium: an incomplete adaptation to ischemia.  Circulation. 1997;  96 2920-2931
  • 18 Reimer K A, Lowe J E, Rasmussen M M. et al . The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs. duration of coronary occlusion in dogs.  Circulation. 1977;  56 786-794
  • 19 Reimer K A, Jennings R B. The „wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow.  Lab Invest. 1979;  40 633-644
  • 20 Gallagher K P, Osakada G, Matsuzaki M. et al . Nonuniformity of inner and outer systolic wall thickening in conscious dogs.  Am J Physiol. 1985;  249 H241-248
  • 21 Sheridan F M, Cole P G, Ramage D. Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an in vivo canine model.  Circulation. 1996;  93 1784-1787
  • 22 Reffelmann T, Kloner R A. The „no-reflow” phenomenon: basic science and clinical correlates.  Heart. 2002;  87 162-168
  • 23 Ito H, Maruyama A, Iwakura K. Clinical implications of the „no-reflow” phenomenon: a predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction.  Circulation. 1996;  93 223-228
  • 24 Wu K C, Zerhouni E A, Judd R M. et al . Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction.  Circulation. 1998;  97 765-772
  • 25 Cohn J N, Ferrari R, Sharpe N. Cardiac remodelling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling.  Am Coll Cardiol. J. 2000;  35 569-582
  • 26 Sutton M G, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy.  Circulation. 2000;  101 2981-2988
  • 27 Gaudron P, Eilles C, Kugler I. et al . Progressive left ventricular dysfunction and remodeling after myocardial infarction.  Circulation. 1993;  87 755-763
  • 28 McNamara M T, Higgins C B, Ehman R L. et al . Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA.  Radiology. 1984;  153 157-163
  • 29 Niendorf T, Sodickson D. Beschleunigung der kardiovaskulären MRT mittels paralleler Bildgebung: Grundlagen, praktische Aspekte, klinische Anwendungen und Perspektiven.  Fortschr Röntgenstr. 2006;  178 15-30
  • 30 Baer F M, Theissen P, Schneider C A. et al . Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization.  J Am Coll Cardiol. 1998;  31 1040-1048
  • 31 Sommer T, Hofer U, Omran H. et al . Stress-Cine-MRT zur Primärdiagnostik der koronaren Herzkrankheit.  Fortschr Röntgenstr. 2002;  174 605-613
  • 32 Abdel-Aty H, Zagrosek A, Schulz-Menger J. et al . Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction.  Circulation. 2004;  109 2411-2416
  • 33 Kostler H, Beer M, Landschutz W. et al . 31P-MR-Spektroskopie aller Wandabschnitte des menschlichen Herzens bei 1,5 T mit akquisitionsgewichteter Chemical-Shift-Bildgebung.  Fortschr Röntgenstr. 2001;  173 1093-1098
  • 34 Sandstede J, Pabst T, Beer M. et al . 23Natrium MRT zur Infarktdarstellung am menschlichen Herzen.  Fortschr Röntgenstr. 2000;  172 739-743
  • 35 Messroghli D R, Niendorf T, Schulz-Menger J. et al . T1 mapping in patients with acute myocardial infarction.  J Cardiovasc Magn Reson. 2003;  5 353-359
  • 36 Schmitt M, Mohrs O K, Petersen S E. et al . Bestimmung der myokardialen Perfusionsreserve bei KHK-Patienten mit der kontrastverstärkten MRT: Ein Vergleich zwischen semiquantitativer und quantitativer Auswertung.  Fortschr Röntgenstr. 2002;  174 187-195
  • 37 Jerosch-Herold M, Muehling O, Wilke N. MRI of myocardial perfusion.  Semin Ultrasound CT MR. 2006;  27 2-10
  • 38 Diesbourg L D, Prato F S, Wisenberg G. et al . Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease.  Magn Reson Med. 1992;  23 239-253
  • 39 Krombach G A, Saeed M, Higgins C B. et al . Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats.  Radiology. 2004;  230 183-190
  • 40 Rehwald W G, Fieno D S, Chen E L. et al . Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury.  Circulation. 2002;  105 224-229
  • 41 Kim R J, Fieno D S, Parrish T B. et al . Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function.  Circulation. 1999;  100 1992-2002
  • 42 Hunold P, Schlosser T, Vogt F M. et al . Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease.  AJR Am J Roentgenol. 2005;  184 1420-1426
  • 43 Wesbey G E, Higgins C B, McNamara M T. et al . Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium.  Radiology. 1984;  153 165-169
  • 44 Simonetti O P, Kim R J, Fieno D S. et al . An improved MR imaging technique for the visualization of myocardial infarction.  Radiology. 2001;  218 215-223
  • 45 Kim R J, Shah D J, Judd R M. How we perform delayed enhancement imaging.  J Cardiovasc Magn Reson. 2003;  5 505-514
  • 46 Oshinski J N, Yang Z, Jones J R. et al . Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging.  Circulation. 2001;  104 2838-2842
  • 47 Huber A M, Schoenberg S O, Hayes C. et al . Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction.  Radiology. 2005;  237 854-860
  • 48 Wagner A, Mahrholdt H, Holly T A. et al . Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study.  Lancet. 2003;  361 374-379
  • 49 Beek A M, Kuhl H P, Bondarenko O. et al . Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction.  J Am Coll Cardiol. 2003;  42 895-901
  • 50 Choi K M, Kim R J, Gubernikoff G. et al . Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function.  Circulation. 2001;  104 1101-1107
  • 51 Wu E, Judd R M, Vargas J D. et al . Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction.  Lancet. 2001;  357 21-28
  • 52 Kim R J, Wu E, Rafael A. et al . The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction.  N Engl J Med. 2000;  343 1445-1453
  • 53 Knuesel P R, Nanz D, Wyss C. et al . Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization.  Circulation. 2003;  108 1095-1100
  • 54 Sandstede J J, Beer M, Lipke C. et al . Time course of contrast enhancement patterns after Gd-BOPTA in correlation to myocardial infarction and viability: a feasibility study.  J Magn Reson Imaging. 2001;  14 789-974
  • 55 Krombach G A, Higgins C B, Chujo M. et al . Gadomer-enhanced MR imaging in the detection of microvascular obstruction: alleviation with nicorandil therapy.  Radiology. 2005;  236 510-518
  • 56 Pislaru S V, Ni Y, Pislaru C. et al . Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent.  Circulation. 1999;  99 690-696
  • 57 Saeed M, Lund G, Wendland M F. et al . Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media.  Circulation. 2001;  103 871-876
  • 58 Bremerich J, Saeed M, Arheden H. et al . Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model.  Radiology. 2000;  216 524-530
  • 59 Natanzon A, Aletras A H, Hsu L Y. et al . Determining canine myocardial area at risk with manganese-enhanced MR imaging.  Radiology. 2005;  236 859-866
  • 60 Schmermund A, Gerber T, Behrenbeck T. et al . Measurement of myocardial infarct size by electron beam computed tomography: a comparison with 99 mTc sestamibi.  Invest Radiol. 1998;  33 313-321
  • 61 Flohr T, Stierstorfer K, Raupach R. et al . Performance evaluation of a 64-slice CT system with z-flying focal spot.  Fortschr Röntgenstr. 2004;  176 1803-1810
  • 62 Weber C, Begemann P, Wedegartner U. et al . Koronarkalkquantifizierung und Koronarangiographie mittels Mehrzeilendetektorspiral-CT - Klinische Erfahrungen.  Fortschr Röntgenstr. 2005;  177 50-59
  • 63 Mahnken A H, Gunther R W, Krombach G A. Grundlagen der linksventrikulären Funktionsanalyse mittels MRT und MSCT.  Fortschr Röntgenstr. 2004;  176 1365-1379
  • 64 Heuschmid M, Rothfuss J, Schroder S. et al . Bestimmung linksventrikulärer Funktionsparameter: Vergleich von 16-Zeilen-Mehrschicht-CT mit der MR-Tomographie.  Fortschr Röntgenstr. 2005;  177 60-66
  • 65 Nikolaou K, Knez A, Sagmeister S. et al . Assessment of myocardial infarctions using multirow-detector computed tomography.  J Comput Assist Tomogr. 2004;  28 286-292
  • 66 Nikolaou K, Sanz J, Poon M. et al . Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results.  Eur Radiol. 2005;  15 864-871
  • 67 Gosalia A, Haramati L B, Sheth M P. et al . CT detection of acute myocardial infarction.  Am J Roentgenol. 2004;  182 1563-1566
  • 68 Kurata A, Mochizuki T, Koyama Y. et al . Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography alternative to stress myocardial perfusion scintigraphy.  Circ J. 2005;  69 550-557
  • 69 Mahnken A, Klotz E, Lautenschläger S. et al . Assessment of myocardial infarction from cardiac MSCT using model-based heart segmentation and perfusion weighted color maps.  Eur Radiol. 2005;  15 E13
  • 70 Nesto R W, Kowalchuk G J. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia.  Am J Cardiol. 1987;  59 23C-30C
  • 71 Mohlenkamp S, Lerman L O, Lerman A. et al . Minimally invasive evaluation of coronary microvascular function by electron beam computed tomography.  Circulation. 2000;  102 2411-2416
  • 72 Mahnken A H, Bruners P, Katoh M. et al . Dynamic multi-section CT imaging in acute myocardial infarction: preliminary animal experience.  Eur Radiol. 2006;  16 746-752
  • 73 Stantz K M, Liang Y, Meyer C A. et al . In-vivo regional myocardial perfusion measurements in a porcine model by ECG-gated multislice computed tomography S.  Proceedings of SPIE. 2003;  5031 222-233
  • 74 Wintersperger B J, Ruff J, Becker C R. et al . Assessment of regional myocardial perfusion using multirow-detector computed tomography.  Eur Radiol. 2002;  12 Suppl 1 294
  • 75 Higgins C B, Sovak M, Schmidt W. et al . Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary report.  Invest Radiol. 1978;  13 337-339
  • 76 Masuda Y, Yoshida H, Morooka N. et al . The usefulness of x-ray computed tomography for the diagnosis of myocardial infarction.  Circulation. 1984;  70 217-225
  • 77 Lardo A C, Cordeiro M AS, Silva C. et al . Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar.  Circulation. 2006;  113 394-404
  • 78 Paul J F, Wartski M, Caussin C. et al . Late defect on delayed contrast-enhanced multidetector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: initial experience.  Radiology. 2005;  236 485-489
  • 79 Gerber B L, Belge B, Legros G J. et al . Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance.  Circulation. 2006;  113 823-833
  • 80 Koyama Y, Matsuoka H, Mochizuki T. et al . Assessment of reperfused acute myocardial infarction with two-phase contrast enhanced helical CT: prediction of left ventricular function and wall thickness.  Radiology. 2005;  235 804-811
  • 81 Buecker A, Katoh M, Krombach G A. et al . A feasibility study of contrast enhancement of acute myocardial infarction in multislice computed tomography: comparison with magnetic resonance imaging and gross morphology in pigs.  Invest Radiol. 2005;  40 700-704
  • 82 Mahnken A H, Wildberger J E. Multislice spiral computed tomography for assessment of myocardial viability in myocardial infarction.  Eur Radiol. 2006;  16 Suppl 1 493
  • 83 Park J M, Choe Y H, Chang S. et al . Usefulness of multidetector-row CT in the evaluation of reperfused myocardial infarction in a rabbit model.  Korean J Radiol. 2004;  5 19-524

PD Dr. Andreas H. Mahnken

Klinik für Radiologische Diagnostik, Universitätsklinikum der RWTH Aachen

Pauwelsstraße 30

52074 Aachen

Phone: ++49/2 41/80 88 33 2

Fax: ++49/2 41/8 08 24 99

Email: mahnken@rad.rwth-aachen.de

    >