Z Gastroenterol 2006; 44(8): 667-671
DOI: 10.1055/s-2006-926903
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Pathophysiology in Microvillus Inclusion Disease

Neue pathophysiologische Aspekte der MikrovilluseinschlusskörperchenerkrankungK. Reinshagen1 , H. Naim2 , G. Heusipp3 , K.-P Zimmer4
  • 1Kinderchirurgische Klinik, Universitätsklinikum Mannheim
  • 2Institut für Physiologische Chemie, Tierärztliche Hochschule Hannover
  • 3Institut für Infektiologie, Universitätsklinikum Münster
  • 4Klinik und Poliklinik für Kinderheilkunde, Universitätsklinikum Münster
Further Information

Publication History

manuscript received: 15.3.2006

manuscript accepted: 7.6.2006

Publication Date:
11 August 2006 (online)

Zusammenfassung

Die Mikrovilluseinschlusskörperchenerkrankung (MID) ist eine angeborene Durchfallserkrankung. Der wässrige Durchfall tritt zumeist erstmals an den ersten Lebenstagen auf. Die charakteristischen pathologischen Veränderungen sind lichtmikroskopisch eine Villusatrophie sowie eine Anhäufung PAS-positiven Materials in den Enterozyten nahe der apikalen Membran. Elektronenmikroskopisch findet man neben einer hohen Dichte sekretorischer Granula nahe der apikalen Membran bei Enterozyten der Kryptenregion die pathognomonischen Mikrovilluseinschlusskörperchen, die überwiegend in Enterozyten der Villusregion nachweisbar sind. Bisher sind die zugrunde liegenden molekularen Defekte nicht geklärt. Wir diskutieren in dieser Arbeit die aktuellen Hypothesen zur Pathophysiologie der Erkrankung und die Therapieoptionen, die sich aus den bisherigen Erkenntnissen ergeben.

Abstract

Microvillus inclusion disease (MID) is a congenital disorder with the clinical signs of watery diarrhea often beginning in the first days of life. The main pathological features of the disease include a villus atrophy and an accumulation of periodic acid-Schiff (PAS)-positive material within the apical cytoplasm of enterocytes on the light microscopy level. Electron microscopic criteria are pathognomonic consisting of an increased amount of secretory granules preferentially in crypt epithelial cells and of the presence of microvillus inclusion bodies (MIBs) which are most frequently found in villus enterocytes. Until now the basic molecular defects have not been disclosed completely. In this review we discuss the actual pathogenetic hypothesis and the therapeutic options besides small bowel transplantation.

References

  • 1 Murch S H. Toward a molecular understanding of complex childhood enteropathies.  J Pediatr Gastroenterol Nutr. 2002;  34 4-10
  • 2 Davidson G, Cutz E, Hamilton J. et al . Familial enteropathy: A syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villous atrophy.  Gastroenterology. 1978;  75 783-790
  • 3 Phillips A, Schmitz J. Familial microvillus atrophy: A clinico-pathological survey of 23 cases.  J Pediatr Gastroenterol Nutr. 1992;  14 380-396
  • 4 Rhoads J M, Vogler R C, Lacey S R. et al . Microvillus inclusion disease: in vitro jejunal electrolyte transport.  Gastroenterology. 1991;  100 811-817
  • 5 Cutz E, Rhoads M, Drumm B. et al . Microvillus inclusion disease: An inherited defect of brush-border assembly and differentiation.  N Engl J Med. 1989;  320 646-651
  • 6 Pohl J F, Shub M D, Trevelline E E. et al . A cluster of microvillous inclusion disease in the Navajo population.  J Pediatr. 1999;  134 103-106
  • 7 Nathavitharana K A, Green N J, Raafat F. et al . Siblings with microvillous inclusion disease.  Arch Dis Child. 1994;  71 71-73
  • 8 Cutz E, Sherman P M, Davidson G P. Enteropathies associated with protracted diarrhea of infancy: clinicopathological features, cellular and molecular mechanisms.  Pediatr Pathol Lab Med. 1997;  17 335-368
  • 9 Phillips A, Jenkins P, Raafat F. et al . Congenital microvillus atrophy: Specific diagnostic features.  Arch Dis Child. 1985;  60 135-140
  • 10 Groisman G M, Amar M, Livne E. CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy).  Am J Surg Pathol. 2002;  26 902-907
  • 11 Groisman G M, Ben-Izhak O, Schwersenz A. et al . The value of polyclonal carcinoembryonic antigen immunostaining in the diagnosis of microvillous inclusion disease.  Hum Pathol. 1993;  24 1232-1237
  • 12 Groisman G M, Sabo E, Meir A. et al . Enterocyte apoptosis and proliferation are increased in microvillous inclusion disease (familial microvillous atrophy).  Hum Pathol. 2000;  31 1404-1410
  • 13 Bell S W, Kerner Jr J A, Sibley R K. Microvillous inclusion disease. The importance of electron microscopy for diagnosis.  Am J Surg Pathol. 1991;  15 1157-1164
  • 14 Phillips A, Szafransky M, Man L Y. et al . Periodic Acid-Schiff staining abnormality in microvillus atrophy: Photometric and ultrastructural studies.  J Pediatr Gastroenterol Nutr. 2000;  30 34-42
  • 15 Ameen N A, Salas P. Microvillus inclusion disease: A genetic defect affecting apical membrane protein traffic in intestinal epithelium.  Traffic. 2000;  1 76-83
  • 16 Phillips A, Fransen J, Hauri H P. et al . The constitutive pathway in microvillus atrophy.  J Pediatr Gastroenterol Nutr. 1993;  17 239-246
  • 17 Reinshagen K, Naim H Y, Zimmer K P. Autophagocytosis of the apical membrane in microvillus inclusion disease.  Gut. 2002;  51 514-521
  • 18 Phillips A D, Brown A, Hicks S. et al . Acetylated sialic acid residues and blood group antigens localise within the epithelium in microvillous atrophy indicating internal accumulation of the glycocalyx.  Gut. 2004;  53 1764-1771
  • 19 Apodaca G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton.  Traffic. 2001;  2 149-159
  • 20 Valentijn K, Valentijn J A, Jamieson J D. Role of actin in regulated exocytosis and compensatory membrane retrieval: insights from an old acquaintance.  Biochem Biophys Res Commun. 1999;  266 652-661
  • 21 Hamm-Alvarez S F, Sheetz M P. Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney.  Physiol Rev. 1998;  78 1109-1129
  • 22 Drumm B, Cutz E, Tomkins K B. et al . Urogastrone/epidermal growth factor in treatment of congenital microvillous atrophy.  Lancet. 1988;  16 111-112
  • 23 Couper R T, Berzen A, Berall G. et al . Clinical response to the long acting somatostatin analogue SMS 201 - 995 in a child with congenital microvillus atrophy.  Gut. 1989;  30 1020-1024
  • 24 Croft N M, Howatson A G, Ling S C. et al . Microvillous inclusion disease: an evolving condition.  J Pediatr Gastroenterol Nutr. 2000;  31 185-189
  • 25 Colomb V, Goulet O, Ricour C. Home enteral and parenteral nutrition in children.  Baillieres Clin Gastroenterol. 1998;  12 877-894
  • 26 Ruemmele F M, Jan D, Lacaille F. et al . New perspectives for children with microvillous inclusion disease: early small bowel transplantation.  Transplantation. 2004;  77 1024-1028
  • 27 Nelson W J. Adaptation of core mechanisms to generate cell polarity.  Nature. 2003;  17 766-774
  • 28 Segal G, Lee W, Arora P D. et al . Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts.  J Cell Sci. 2001;  114 119-129
  • 29 Holen I, Stromhaug P E, Gordon P B. et al . Inhibition of autophagy and multiple steps in asialoglycoprotein endocytosis by inhibitors of tyrosine protein kinases (tyrphostins).  J Biol Chem. 1995;  270 12 823-12 831
  • 30 Barbieri J T, Sun J. Pseudomonas aeruginosa ExoS and ExoT.  Rev Physiol Biochem Pharmacol. 2004;  152 79-92
  • 31 Viboud G I, Bliska J B. Yersinia outer proteins: role in modulation of host cell signalling responses and pathogenesis.  Annu Rev Microbiol. 2005;  59 69-89

Dr. Konrad Reinshagen

Kinderchirurgische Klinik, Universitätsklinikum Mannheim

Theodor-Kutzer-Ufer 1 - 3

68167 Mannheim

Email: konrad.reinshagen@kch.ma.uni-heidelberg.de

    >