References and Notes
<A NAME="RW09405ST-1A">1a</A>
Evans DA.
Andrews GC.
Acc. Chem. Res.
1974,
7:
147
<A NAME="RW09405ST-1B">1b</A>
Werstiuk NH.
Tetrahedron
1983,
39:
205
<A NAME="RW09405ST-1C">1c</A>
Block E.
Reactions of Organosulfur Compounds
Academic Press;
New York:
1978.
For reviews, see:
<A NAME="RW09405ST-2A">2a</A>
Markó IE. In Comprehensive Organic Synthesis
Vol 3:
Trost BM.
Fleming I.
Pattenden G.
Pergamon;
New York:
1991.
Chap. 3.10.
<A NAME="RW09405ST-2B">2b</A>
Vedejs E.
Acc. Chem. Res.
1984,
17:
358
<A NAME="RW09405ST-2C">2c</A>
Li AH.
Dai LX.
Aggarwal VK.
Chem. Rev.
1997,
97:
2341
Examples for [2,3]-sigmatropic rearrangements of allyl sulfides, see:
<A NAME="RW09405ST-3A">3a</A>
Ma M.
Peng L.
Li C.
Zhang X.
Wang J.
J. Am. Chem. Soc.
2005,
127:
15016
<A NAME="RW09405ST-3B">3b</A>
McMillen DW.
Varga N.
Reed BA.
King C.
J. Org. Chem.
2000,
65:
2532
<A NAME="RW09405ST-3C">3c</A>
Zhang XM.
Qu ZH.
Shi WF.
Jin XL.
Wang JB.
J. Org. Chem.
2002,
67:
5621
<A NAME="RW09405ST-3D">3d</A>
Gulea M.
Marchand P.
Masson S.
Saquet M.
Collignon N.
Synthesis
1998,
1635
<A NAME="RW09405ST-3E">3e</A>
Bell PT.
Cagle PC.
Vichard D.
Gladysz JA.
Organometallics
1996,
15:
4695
<A NAME="RW09405ST-3F">3f</A>
Cagle PC.
Meyer O.
Weickhardt K.
Arif AM.
Gladysz JA.
J. Am. Chem. Soc.
1995,
117:
11730
<A NAME="RW09405ST-3G">3g</A>
Carter DS.
van Vranken DL.
Tetrahedron Lett.
1999,
40:
1617
<A NAME="RW09405ST-4">4</A>
Castro AMM.
Chem. Rev.
2004,
104:
2939
<A NAME="RW09405ST-5A">5a</A>
Streiff S.
Ribeiro N.
Désaubry L.
J. Org. Chem.
2004,
69:
7592
<A NAME="RW09405ST-5B">5b</A>
Perales JB.
Makino NF.
van Vranken DL.
J. Org. Chem.
2002,
67:
6711
<A NAME="RW09405ST-5C">5c</A>
Cheng D.
Zhu SR.
Yu ZF.
Cohe T.
J. Am. Chem. Soc.
2001,
123:
30
<A NAME="RW09405ST-5D">5d</A>
Conrad JC.
Parnas HH.
Snelgrove JL.
Fogg DE.
J. Am. Chem. Soc.
2005,
127:
11882
<A NAME="RW09405ST-5E">5e</A>
Malmström J.
Gupta V.
Engman L.
J. Org. Chem.
1998,
63:
3318
<A NAME="RW09405ST-5F">5f</A>
Albéniz AC.
Espinet P.
Lin YS.
Organometallics
1996,
15:
5010
<A NAME="RW09405ST-6A">6a</A>
Arora A.
Tripathi C.
Shukla Y.
Curr. Cancer Ther. Rev.
2005,
1:
199
<A NAME="RW09405ST-6B">6b</A>
Arora A.
Seth K.
Shukla Y.
Carcinogenesis
2004,
25:
941
<A NAME="RW09405ST-6C">6c</A>
Thomas RD.
Green M.
Wilson C.
Sadrud-Din S.
Carcinogenesis
2004,
25:
787
<A NAME="RW09405ST-6D">6d</A>
Green M.
Wilson C.
Newell O.
Sadrud-Din S.
Thomas R.
Food Chem. Toxicol.
2005,
43:
1323
<A NAME="RW09405ST-7">7</A>
Sato T.
Hiramura Y.
Otera J.
Nozaki H.
Tetrahedron Lett.
1989,
30:
2821
<A NAME="RW09405ST-8">8</A>
Shinada T.
Yoshida Y.
Ohfune Y.
Tetrahedron Lett.
1998,
39:
6027
<A NAME="RW09405ST-9A">9a</A>
Zhan ZP.
Lang K.
Chem. Lett.
2004,
33:
1370
<A NAME="RW09405ST-9B">9b</A>
Zhan ZP.
Zhang YM.
J. Chem. Res., Synop.
1999,
280
<A NAME="RW09405ST-9C">9c</A>
Zhan ZP.
Zhang YM.
J. Chem. Res., Synop.
1998,
148
<A NAME="RW09405ST-9D">9d</A>
Zhan ZP.
Zhang YM.
Synth. Commun.
1998,
28:
493
For reviews, see:
<A NAME="RW09405ST-10A">10a</A>
Ciganek E.
Org. React.
1997,
51:
201
<A NAME="RW09405ST-10B">10b</A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RW09405ST-10C">10c</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
For recent examples, see:
<A NAME="RW09405ST-11A">11a</A>
Das B.
Majhi A.
Banerjee J.
Chowdhury N.
Venkateswarlu K.
Tetrahedron Lett.
2005,
46:
7913
<A NAME="RW09405ST-11B">11b</A>
Das B.
Mahender G.
Chowdhury N.
Banerjee J.
Synlett
2005,
1000
<A NAME="RW09405ST-11C">11c</A>
Kim JN.
Lee HJ.
Lee KY.
Gong JH.
Synlett
2002,
173
<A NAME="RW09405ST-11D">11d</A>
Kabalka GW.
Venkataiah B.
Dong G.
Org. Lett.
2003,
5:
3803
<A NAME="RW09405ST-11E">11e</A>
Kabalka GW.
Venkataiah B.
Dong G.
Tetrahedron Lett.
2003,
44:
4673
<A NAME="RW09405ST-11F">11f</A>
Chung YM.
G ong JH.
Kim TH.
Kim JN.
Tetrahedron Lett.
2001,
42:
9023
<A NAME="RW09405ST-11G">11g</A>
Shi M.
Jiang JK.
Feng YS.
Org. Lett.
2000,
2:
2397
<A NAME="RW09405ST-12A">12a</A>
Li J.
Qian WX.
Zhang YM.
Tetrahedron
2004,
60:
5793
<A NAME="RW09405ST-12B">12b</A>
Li J.
Xu H.
Zhang YM.
Tetrahedron Lett.
2005,
46:
1931
<A NAME="RW09405ST-12C">12c</A>
Li J.
Wang XX.
Zhang YM.
Synlett
2005,
1039
<A NAME="RW09405ST-12D">12d</A>
Li J.
Wang XX.
Zhang YM.
Tetrahedron Lett.
2005,
46:
5233
<A NAME="RW09405ST-13">13</A>
Liu YK.
Li J.
Zheng H.
Xu DQ.
Xu ZY.
Synlett
2005,
2999
Some allyl sulfide analogues prepared from Baylis-Hillman alcohols or Baylis-Hillman
bromides by other approaches have been previously reported in literature, see:
<A NAME="RW09405ST-14A">14a</A>
Calò V.
Lopez L.
Pesce G.
J. Organomet. Chem.
1988,
353:
405
<A NAME="RW09405ST-14B">14b</A>
Auvray P.
Knochel P.
Normant JF.
Tetrahedron
1988,
44:
6095
<A NAME="RW09405ST-14C">14c</A>
Deane PO.
Guthrie-Strachan JJ.
Kaye PT.
Whittaker RE.
Synth. Commun.
1988,
28:
2601
All Baylis-Hillman acetates were prepared according to literature:
<A NAME="RW09405ST-15A">15a</A>
Hoffman HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1983,
22:
795
<A NAME="RW09405ST-15B">15b</A>
David HO.
Kenneth MN.
J. Org. Chem.
2003,
68:
6427
<A NAME="RW09405ST-16">16</A>
General Procedure for the Preparation of Sodium (
Z
)-Allyl Thiosulfates.
In a 25-mL flask were added Na2SSO3·5H2O (0.25 g, 1 mmol), Baylis-Hillman acetate 1 (1 mmol), and anhyd MeOH (15 mL). The mixture was stirred at r.t. for 4-8 h. Then,
to the resultant mixture was added silica gel powder (2.0 g). After evaporation of
the solvent, the silica gel-absorbed crude product was loaded to chromatography column
for further purification using MeOH-EtOAc (1:1) as eluent.
According to the literature, in the 1H NMR spectrum of a trisubstituted alkene the β-vinylic proton, cis and trans to the ester group are known to resonate at δ = 7.5 ppm and δ = 6.5 ppm, respectively,
when alkene is substituted by an aryl group; while the same proton cis and trans to an ester group appears at δ = 6.8 ppm and δ = 5.7 ppm, respectively, when substituted
by an alkyl one. See:
<A NAME="RW09405ST-17A">17a</A>
Larson GL.
de Kaifer CF.
Seda R.
Torres LE.
Ramirez JR.
J. Org. Chem.
1984,
49:
3385
<A NAME="RW09405ST-17B">17b</A>
Basavaiah D.
Sarma PKS.
Bhavani AKD.
J. Chem. Soc., Chem. Commun.
1994,
1091
<A NAME="RW09405ST-17C">17c</A>
Baraldi PG.
Guarneri M.
Pollini GP.
Simoni D.
Barco A.
Benetti S.
J. Chem. Soc., Perkin Trans. 1
1984,
2501
<A NAME="RW09405ST-17D">17d</A>
Tanaka K.
Yamagishi N.
Tanikaga R.
Kaji A.
Bull. Chem. Soc. Jpn.
1983,
56:
528
<A NAME="RW09405ST-18">18</A>
Selected spectroscopic data for compound 2:
Compound 2a: 1H NMR (400 MHz, DMSO-d
6): δ = 3.71 (s, 3 H, OCH
3), 4.05 (s, 2 H, methylene-H), 7.38-7.46 (m, 3 H, ArH), 7.63 (s, 1 H, ArCH=), 7.67-7.72 (m, 2 H, ArH). 13C NMR (100 MHz, DMSO-d
6): δ = 31.49, 52.35, 127.33, 128.86, 129.56, 130.42, 134.24, 140.77, 167.28. IR (KBr):
ν = 3082, 3026, 1714, 1625 cm-1. MS (70 eV): m/z (%) = 207 [M+ - SO3Na]. Anal. Calcd for C11H11NaO5S2: C, 42.57; H, 3.57. Found: C, 42.89; H, 3.65.
<A NAME="RW09405ST-19">19</A>
Li CJ.
Chem. Rev.
2005,
105:
3095
<A NAME="RW09405ST-20">20</A>
General Procedure for the One-Pot Synthesis of Unsymmetrical Diallylsulfides.
After the sodium (Z)-allyl thiosulfate was readily prepared under an inert atmosphere according to the
procedure given in ref. 15, allyl bromide (3 mmol) and In (1.5 mmol) were added to
the sodium (Z)-allyl thiosulfate solution, the resulting mixture was stirred at r.t. for 30 min.
Then the mixture was stirred at 55 °C for 8-12 h. Upon completion, the reaction mixture
was cooled down to r.t. and extracted with Et2O (2 × 30 mL), washed with brine (15 mL), and dried over MgSO4. After evaporation of solvent, the residue was purified by chromatography using cyclohexane-EtOAc
(6:1) as eluent.
<A NAME="RW09405ST-21">21</A>
Selected spectroscopic data for compounds 3:
Compound 3a: oil. 1H NMR (400 MHz, CDCl3): δ = 3.16 (d, 2 H, J = 6.8 Hz), 3.59 (s, 2 H), 3.86 (s, 3 H), 4.84-5.04 (m, 2 H), 5.77 (ddt, 1 H, J
1 = 17.2 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 7.26-7.50 (m, 5 H, ArH), 7.76 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 28.11, 36.14, 52.44, 117.33, 125.72, 127.88, 128.82, 129.11, 129.84, 134.34,
140.81, 168.24. IR (film): ν = 3081, 3060, 3026, 1716, 1633, 1597 cm-1.
MS (70 eV): m/z (%) = 248 [M+]. Anal. Calcd for C14H16O2S: C, 67.71; H, 6.49. Found: C, 67.50; H, 6.62.
Compound 3c: oil. 1H NMR (400 MHz, CDCl3): δ = 3.19 (d, 2 H, J = 6.8 Hz), 3.55 (s, 2 H), 3.86 (s, 3 H), 4.96-5.06 (m, 2 H), 5.80 (ddt, 1 H, J
1 = 17.2 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 7.39 (d, 2 H, J = 8.0 Hz, ArH), 7.46 (d, 2 H, J = 8.0 Hz, ArH), 7.69 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 27.82, 36.06, 52.35, 117.33, 125.51, 128.86, 129.70, 130.94, 133.29, 133.93,
139.39, 167.66. IR (film): ν = 3076, 3054, 3023, 1718, 1632, 1593 cm-1. MS (70 eV): m/z (%) = 282 [M+], 284 [M+ + 2]. Anal. Calcd for C14H15ClO2S: C, 59.46; H, 5.35. Found: C, 59.21; H, 5.43.
Compound 3e: oil. 1H NMR (400 MHz, CDCl3): δ = 3.21 (d, 2 H, J = 6.8 Hz), 3.62 (s, 2 H), 3.84 (s, 3 H), 3.85 (s, 3 H), 4.99-5.07 (m, 2 H), 5.84
(ddt, 1 H, J
1 = 16.8 Hz, J
2 = 10.0 Hz, J
3 = 6.8 Hz), 6.94 (d, 2 H, J = 9.2 Hz, ArH), 7.50 (d, 2 H, J = 9.2 Hz, ArH), 7.71 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 28.17, 35.22, 52.16, 55.31, 113.70, 114.07, 117.15, 127.41, 128.80, 131.63,
134.12, 140.71, 160.26, 168.17. IR (film): ν = 3075, 3058, 3023, 1714, 1632, 1605
cm-1. MS (70 eV): m/z (%) = 278 [M+]. Anal. Calcd for C15H18O3S: C, 64.72; H, 6.52. Found: C, 64.96; H, 6.62.