References and Notes
<A NAME="RS12505ST-1A">1a</A>
Greenhill JV.
Chem. Soc. Rev.
1977,
6:
277
<A NAME="RS12505ST-1B">1b</A>
Lue P.
Greenhill JV.
Adv. Heterocycl. Chem.
1996,
67:
207
<A NAME="RS12505ST-1C">1c</A>
Elassar A.-ZA.
El-Khair AA.
Tetrahedron
2003,
59:
8463
<A NAME="RS12505ST-2A">2a</A>
Selic L.
Grdadolnik SG.
Stanovnik B.
Helv. Chim. Acta
1997,
80:
2418
<A NAME="RS12505ST-2B">2b</A>
Smodis J.
Stanovnik B.
Tetrahedron
1998,
54:
9799
<A NAME="RS12505ST-2C">2c</A>
Stanovnik B.
Svete J.
Synlett
2000,
1077
<A NAME="RS12505ST-3">3</A>
Cruz MC.
Tamariz J.
Tetrahedron Lett.
2004,
45:
2377
<A NAME="RS12505ST-4">4</A>
Cruz MC.
Tamariz J.
Tetrahedron
2005,
61:
10061
<A NAME="RS12505ST-5A">5a</A>
Gribble GW.
Pyrroles and their Benzo Derivatives: Applications, In Comprehensive Heterocyclic Chemistry
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Elsevier;
Oxford:
1996.
p.207-257
<A NAME="RS12505ST-5B">5b</A>
Sundberg RJ.
Indoles
Academic Press;
St. Louis:
1996.
<A NAME="RS12505ST-5C">5c</A>
Joule JA.
Indoles, In Science of Synthesis
Vol. 10:
Thomas EJ.
Thieme;
Stuttgart:
2000.
Chap. 13.
<A NAME="RS12505ST-6A">6a</A>
Saxton JE.
The Monoterpenoid Indole Alkaloids, In Indoles
Part 4:
Wiley-Interscience;
New York:
1983.
<A NAME="RS12505ST-6B">6b</A>
Abreu P.
Pereira A.
Heterocycles
1998,
48:
885
<A NAME="RS12505ST-6C">6c</A>
Faulkner DJ.
Nat. Prod. Rep.
1999,
16:
155
<A NAME="RS12505ST-6D">6d</A>
Lousnasmaa M.
Tolvanen A.
Nat. Prod. Rep.
2000,
17:
175
<A NAME="RS12505ST-6E">6e</A>
Steele JCP.
Veitch NC.
Kite GC.
Simmonds MSJ.
Warhurst DC.
J. Nat. Prod.
2002,
65:
85
<A NAME="RS12505ST-6F">6f</A>
Grougnet R.
Magiatis P.
Fokialakis N.
Mitaku S.
Skaltsounis A.-L.
Tillequin F.
Sévenet T.
Litaudon M.
J. Nat. Prod.
2005,
68:
1083
<A NAME="RS12505ST-7A">7a</A>
Bunker AM.
Edmunds JJ.
Berryman KA.
Walker DM.
Flynn MA.
Welch KM.
Doherty AM.
Bioorg. Med. Chem. Lett.
1996,
6:
1061
<A NAME="RS12505ST-7B">7b</A>
Sechi M.
Derudas M.
Dallachio R.
Dessi A.
Bacchi A.
Sannia L.
Carta F.
Palomba M.
Ragab O.
Chan C.
Shoemaker R.
Sei S.
Dayam R.
Neamati N.
J. Med. Chem.
2004,
47:
5298
<A NAME="RS12505ST-7C">7c</A>
Heinrich T.
Böttcher H.
Bioorg. Med. Chem. Lett.
2004,
14:
2681
<A NAME="RS12505ST-7D">7d</A>
Riendeau D.
Aspiotis R.
Ethier D.
Gareau Y.
Grimm EL.
Guay J.
Guiral S.
Juteau H.
Mancini JA.
Méthot N.
Rubin J.
Friesen RW.
Bioorg. Med. Chem. Lett.
2005,
15:
3352
<A NAME="RS12505ST-7E">7e</A>
Yates AS.
Doughty SW.
Kendall DA.
Kellam B.
Bioorg. Med. Chem. Lett.
2005,
15:
3758
<A NAME="RS12505ST-8A">8a</A>
Black DStC.
Pyrroles and their Benzo Derivatives: Reactivity, In Comprehensive Heterocyclic Chemistry
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Elsevier;
Oxford:
1996.
p.39-117
<A NAME="RS12505ST-8B">8b</A>
Zhang H.
Larock RC.
J. Org. Chem.
2002,
67:
9318
<A NAME="RS12505ST-8C">8c</A>
Zhang H.
Larock RC.
Org. Lett.
2002,
4:
3035
<A NAME="RS12505ST-8D">8d</A>
Wynne JH.
Stalick WM.
J. Org. Chem.
2003,
68:
4845
<A NAME="RS12505ST-8E">8e</A>
Agnusdei M.
Bandini M.
Melloni A.
Umani-Ronchi A.
J. Org. Chem.
2003,
68:
7126
<A NAME="RS12505ST-8F">8f</A>
Duval E.
Cuny GD.
Tetrahedron Lett.
2004,
45:
5411
For recent examples, see:
<A NAME="RS12505ST-9A">9a</A>
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
<A NAME="RS12505ST-9B">9b</A>
Scott TL.
Söderberg BCG.
Tetrahedron Lett.
2002,
43:
1621
<A NAME="RS12505ST-9C">9c</A>
Witulski B.
Alayrac C.
Tevzadze-Saeftel L.
Angew. Chem. Int. Ed.
2003,
42:
4257
<A NAME="RS12505ST-9D">9d</A>
Walkington A.
Gray M.
Hossner F.
Kitteringham J.
Voyle M.
Synth. Commun.
2003,
33:
2229
<A NAME="RS12505ST-9E">9e</A>
Yue D.
Larock RC.
Org. Lett.
2004,
6:
1037
<A NAME="RS12505ST-9F">9f</A>
Shen M.
Li G.
Lu BZ.
Hossain A.
Roschangar F.
Farina V.
Senanayake CH.
Org. Lett.
2004,
6:
4129
<A NAME="RS12505ST-9G">9g</A>
Nazaré M.
Schneider C.
Lindenschmidt A.
Will DW.
Angew. Chem. Int. Ed.
2004,
43:
4526
<A NAME="RS12505ST-9H">9h</A>
Siu J.
Baxendale IR.
Ley SV.
Org. Biomol. Chem.
2004,
2:
160
<A NAME="RS12505ST-9I">9i</A>
Amjad M.
Knight DW.
Tetrahedron Lett.
2004,
45:
539
<A NAME="RS12505ST-9J">9j</A>
Ackermann L.
Born R.
Tetrahedron Lett.
2004,
45:
9541
<A NAME="RS12505ST-9K">9k</A>
Arcadi A.
Bianchi G.
Marinelli F.
Synthesis
2004,
610
<A NAME="RS12505ST-9L">9l</A>
Hiroya K.
Itoh S.
Sakamoto T.
J. Org. Chem.
2004,
69:
1126
<A NAME="RS12505ST-9M">9m</A>
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
<A NAME="RS12505ST-9N">9n</A>
Barluenga J.
Vázquez-Villa H.
Ballesteros A.
González JM.
Adv. Synth. Catal.
2005,
347:
526
<A NAME="RS12505ST-9O">9o</A>
Söderberg BCG.
Hubbard JW.
Rector SR.
O’Neil SN.
Tetrahedron
2005,
61:
3637
<A NAME="RS12505ST-9P">9p</A>
Ackermann L.
Org. Lett.
2005,
7:
439
<A NAME="RS12505ST-9Q">9q</A>
Arcadi A.
Cacchi S.
Fabrizi G.
Marinelli F.
Parisi LM.
J. Org. Chem.
2005,
70:
6213
<A NAME="RS12505ST-10">10</A>
Typical Procedure for Preparation of 7b.
Under an N2 atmosphere, a mixture of 8b (1.0 g, 9.33 mmol) and anhyd K2CO3 (1.93 g, 14.0 mmol) in dry acetone (10 mL) was heated to 60 °C for 1 h. Methyl bromoacetate
(9, 1.57 g, 10.26 mmol) was added dropwise and the mixture was stirred at 60 °C for
12 h. The mixture was filtered and the solvent was removed under vacuum. The residue
was purified by column chromatography over silica gel (20 g/g of sample, hexane-EtOAc,
95:5), to give 1.44 g (86%) of 7b as a brownish solid.
R
f
= 0.45 (hexane-EtOAc, 8:2); mp 44-45 °C (hexane-EtOAc, 8:2) [lit.
[16]
40 °C]. IR (KBr): 3393, 1741, 1608, 1513, 1439, 1213, 1180, 772 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.33 (s, 3 H, CH3Ar), 3.81 (s, 3 H, CO2Me), 3.93 (s, 2 H, CH2N), 4.24 (br s, 1 H, NH), 6.43-6.49 (m, 2 H, H-2, H-6), 6.63 (br d, J = 7.5 Hz, 1 H, H-4), 7.13 (t, J = 7.5 Hz, 1 H, H-5). 13C NMR (75.4 MHz, CDCl3): δ = 21.4 (CH3Ar), 45.4 (CH2N), 51.9 (CO2
CH3), 109.8 (C-6), 113.6 (C-2), 118.9 (C-4), 129.0 (C-5), 138.8 (C-3), 146.8 (C-1), 171.5
(CO2Me). MS (70 eV): m/z (%) = 179 (65) [M+], 136 (7), 122 (34), 121 (100), 93 (3), 63 (5).
<A NAME="RS12505ST-11">11</A>
Typical Procedure for Preparation of 6b.
A mixture of 7b (0.20 g, 1.12 mmol) and DMFDMA (0.20 g, 1.68 mmol) was heated to 90 °C for 5 h, under
an N2 atmosphere. The crude mixture was evaporated under vacuum and the residue was purified
by column chromatography over silica gel (20 g/g of sample, hexane-EtOAc, 8:2), to
give 0.21 g (79%) of 6b as an orange solid.
R
f
= 0.25 (hexane-EtOAc, 8:2); mp 65-72 °C (decomp., hexane-EtOAc, 8:2). IR (KBr): 3318,
3025, 1735, 1645, 1607, 1488, 1435, 1227, 777 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.26 (s, 3 H, CH3Ar), 3.02 [s, 6 H, N(CH3)2], 3.61 (s, 3 H, CO2CH3), 4.62 (br s, 1 H, NH), 6.40-6.47 (m, 2 H, ArH), 6.54 (br d, J = 7.8 Hz, 1 H, H-4), 7.04 (dd, J = 7.8, 7.2 Hz, 1 H, H-5), 7.39 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 21.5 (CH3Ar), 41.6 [N(CH3)2], 51.1 (CO2
CH3), 98.6 (NC=), 110.4 (C-6), 114.1 (C-2), 118.9 (C-4), 128.8 (C-5), 138.7 (C-3), 146.3
(HC=), 149.1 (C-1), 169.6 (CO2CH3). MS (70 eV): m/z (%) = 234 (4) [M+], 203 (3), 132 (6), 118 (14), 91 (36), 83 (18), 65 (16), 57 (66), 42 (100). Anal.
Calcd for C13H18N2O2: C, 66.64; H, 7.74; N, 11.96. Found: C, 66.47; H, 7.64; N, 11.74.
NMR spectral data of representative examples.
Compound 6a: 1H NMR (300 MHz, CDCl3): δ = 3.01 [s, 6 H, N(CH3)2], 3.62 (s, 3 H, CO2CH3), 4.66 (br s, 1 H, NH), 6.62 (br d, J = 7.5 Hz, 2 H, H-2), 6.72 (t, J = 7.5 Hz, 1 H, H-4), 7.15 (br t, J = 7.5 Hz, 1 H, H-3), 7.40 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 41.6 [N(CH3)2], 51.1 (CO2
CH3), 98.6 (NC=), 113.4 (C-2), 117.9 (C-4), 129.0 (C-3), 146.3 (HC=), 149.1 (C-1), 169.6
(CO2CH3).
Compound 6c: 1H NMR (300 MHz, CDCl3): δ = 2.22 (s, 3 H, CH3Ar), 3.01 [s, 6 H, N(CH3)2], 3.60 (s, 3 H, CO2CH3), 4.52 (br s, 1 H, NH), 6.51-6.57 (m, 2 H, H-2), 6.93-7.00 (m, 2 H, H-3), 7.36 (s,
1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 20.3 (CH3Ar), 41.6 [N(CH3)2], 51.1 (CO2
CH3), 99.1 (NC=), 113.4 (C-2), 127.1 (C-4), 129.5 (C-3), 146.1 (HC=), 146.8 (C-1), 169.6
(CO2CH3).
Compound 6h: 1H NMR (300 MHz, CDCl3): δ = 1.20 (t, J = 7.2 Hz, 3 H, CH
3CH2O), 3.03 [s, 6 H, N(CH3)2], 3.73 (s, 6 H, OMe), 4.10 (q, J = 7.2 Hz, 2 H, CH3CH
2O), 4.70 (br s, 1 H, NH), 5.84 (d, J = 2.1 Hz, 2 H, H-2, H-6), 5.89 (t, J = 2.1 Hz, 1 H, H-4), 7.36 (s, 1 H, HC=). 13C NMR (75.4 MHz, CDCl3): δ = 14.6 (CH3CH2O), 41.8 [N(CH3)2], 55.05 (OMe), 55.08 (OMe), 59.7 (CO2
CH2CH3), 90.3 (C-4), 92.4 (C-2, C-6), 98.8 (NC=), 146.0 (HC=), 151.5 (C-1), 161.5 (C-3,
C-5), 169.0 (CO2Et).
<A NAME="RS12505ST-12">12</A>
Typical Procedure for Preparation of 5b.
Anhyd AlCl3 (0.057 g, 0.43 mmol) was added to a solution of 6b (0.10 g, 0.43 mmol) in dry CH2Cl2 (100 mL) at r.t. The mixture was stirred at r.t. for 24 h and filtered. The filtrate
was washed with H2O (3 × 25 mL), the organic layer was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography
over silica gel (10 g, hexane-EtOAc, 95:5), to give 0.061 g (76%) of 5b as a white solid.
R
f
= 0.33 (hexane-EtOAc, 8:2); mp 97-98 °C (hexane-EtOAc, 7:3) [lit.
[17]
128-129 °C]. IR (KBr): 3324, 1697, 1527, 1441, 1333, 1262, 1211, 764 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.47 (s, 3 H, CH3Ar), 3.94 (s, 3 H, CO2Me), 6.99 (dd, J = 8.1, 0.9 Hz, 1 H, H-5), 7.18 (dd, J = 2.1, 0.9 Hz, 1 H, H-3), 7.20 (br s, 1 H, H-7), 7.56 (d, J = 8.1 Hz, 1 H, H-4), 8.85 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 22.0 (CH3Ar), 51.9 (CO2
CH3), 108.8 (C-3), 111.5 (C-7), 122.2 (C-4), 123.0 (C-5), 125.3 (ArC), 126.5 (ArC), 135.7
(ArC), 157.3 (C-7a), 162.5 (CO2CH3). MS (70 eV):
m/z (%) = 189 (24) [M+], 175 (17), 157 (87), 129 (91), 103 (80), 102 (100), 77 (69), 51 (69).
NMR spectral data of representative examples.
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 3.95 (s, 3 H, CO2CH3), 7.16 (ddd, J = 8.1, 6.8, 1.0 Hz, 2 H, H-5), 7.23 (dd, J = 2.3, 1.0 Hz, 1 H, H-3), 7.33 (ddd, J = 8.4, 6.8, 1.0 Hz, 1 H, H-6), 7.58 (ddd, J = 8.4, 1.0, 0.9 Hz, 1 H, H-7), 7.70 (dd, J = 8.1, 0.9 Hz, 1 H, H-4), 8.98 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 52.0 (CO2
CH3), 108.8 (C-3), 111.9 (C-7), 120.8 (C-5), 122.6 (C-4), 125.4 (C-6), 127.1 (C-2), 127.4
(C-3a), 136.8 (C-7a), 162.4 (CO2CH3).
Compound 5c: 1H NMR (300 MHz, CDCl3): δ = 2.43 (s, 3 H, CH3Ar), 3.94 (s, 3 H, CO2CH3), 7.14 (br s, 1 H, H-3), 7.15 (dd, J = 8.4, 1.5 Hz, 1 H, H-6), 7.31 (br d, J = 8.4 Hz, 1 H, H-7), 7.45 (br s, 1 H, H-4), 9.11 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 21.4 (CH3Ar), 51.9 (CO2
CH3), 108.2 (C-3), 111.6 (C-7), 121.8 (C-4), 127.0 (C-2), 127.4 (C-6), 127.7 (C-5), 130.1
(C-3a), 135.3 (C-7a), 162.6 (CO2CH3).
Compound 5h: 1H NMR (300 MHz, CDCl3): δ = 1.39 (t, J = 7.0 Hz, 3 H, CH
3CH2O), 3.83 (s, 3 H, OMe), 3.90 (s, 3 H, OMe), 4.38 (q, J = 7.0 Hz, 2 H, CH3CH
2O), 6.18 (d, J = 1.5 Hz, 2 H, H-2, H-5), 6.43 (dd, J = 1.5, 0.9 Hz, 1 H, H-7), 7.27 (dd, J = 2.3, 0.9 Hz, 1 H, H-3), 9.10 (br s, 1 H, NH). 13C NMR (75.4 MHz, CDCl3): δ = 14.4 (CH3CH2O), 55.3 (OMe), 55.5 (OMe), 60.7 (CO2
CH2CH3), 86.1 (C-7), 92.6 (C-5), 106.7 (C-3), 113.7 (C-3a), 124.8 (C-2), 138.6 (C-7a), 155.0
(C-4), 160.1 (C-6), 162.1 (CO2Et).
<A NAME="RS12505ST-13">13</A>
CCDC-292937 contains all crystallographic details of this publication and is available
free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from
the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK, fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.
<A NAME="RS12505ST-14A">14a</A>
Jiménez-Vázquez HA.
Ochoa ME.
Zepeda G.
Modelli A.
Jones D.
Mendoza JA.
Tamariz J.
J. Phys. Chem. A
1997,
101:
10082
<A NAME="RS12505ST-14B">14b</A>
Herrera R.
Jiménez-Vázquez HA.
Modelli A.
Jones D.
Söderberg BC.
Tamariz J.
Eur. J. Org. Chem.
2001,
4657
<A NAME="RS12505ST-14C">14c</A>
Mendoza JA.
Jiménez-Vázquez HA.
Herrera R.
Liu J.
Tamariz J.
Rev. Soc. Quím. Méx.
2003,
47:
108
<A NAME="RS12505ST-15">15</A>
Reddy MS.
Cook JM.
Tetrahedron Lett.
1994,
35:
5413
<A NAME="RS12505ST-16">16</A>
Ellis F,
Naylor A,
Wallis CJ, and
Waterhouse I. inventors; EP 388,165.
; Chem. Abstr. 1991, 114, 81891
<A NAME="RS12505ST-17">17</A>
Knittel D.
Synthesis
1985,
186