Semin Thromb Hemost 2006; 32(1): 040-047
DOI: 10.1055/s-2006-933339
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Tissue Factor Expression in the Morphologic Spectrum of Vulnerable Atherosclerotic Plaques

Allard C. van der Wal1 , 2 , Xiaofei Li2 , Onno J. de Boer2
  • 1Professor
  • 2Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
Further Information

Publication History

Publication Date:
15 February 2006 (online)

ABSTRACT

Inflammation and thrombosis are key events in the long-lasting sequence of atherosclerotic plaque initiation, plaque growth, and eventual onset of complications leading to clinically manifest disease. Recent cellular and molecular studies have indicated that inside the plaque tissue complex, proinflammatory and prothrombotic mechanisms are intimately associated, and tissue factor (TF) is one of the main proteins that may link both processes. It is therefore not surprising that TF expression appeared to be a prominent feature in various types of vulnerable atherosclerotic plaques (i.e., lesions that specifically predispose to the onset of symptomatic atherosclerotic disease).

REFERENCES

  • 1 Falk E. Why do plaques rupture?.  Circulation. 1992;  86 III30-III42
  • 2 Wilcox J N, Smith K M, Schwartz S M, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque.  Proc Natl Acad Sci USA. 1989;  86 2839-2843
  • 3 Randolph G J, Luther T, Albrecht S, Magdolen V, Muller W A. Role of tissue factor in adhesion of mononuclear phagocytes to and trafficking through endothelium in vitro.  Blood. 1998;  92 4167-4177
  • 4 Pawlinski R, Pedersen B, Erlich J, Mackman N. Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice.  Thromb Haemost. 2004;  92 444-450
  • 5 Schaar J A, Muller J E, Falk E et al.. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece.  Eur Heart J. 2004;  25 1077-1082
  • 6 Stary H C, Blankenhorn D H, Chandler A B et al.. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.  Circulation. 1992;  85 391-405
  • 7 Virmani R, Kolodgie F D, Burke A P, Farb A, Schwartz S M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.  Arterioscler Thromb Vasc Biol. 2000;  20 1262-1275
  • 8 van der Wal A C, Becker A E. Atherosclerotic plaque rupture-pathologic basis of plaque stability and instability.  Cardiovasc Res. 1999;  41 334-344
  • 9 Hansson G K, Libby P, Schonbeck U, Yan Z Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis.  Circ Res. 2002;  91 281-291
  • 10 Barnes P J, Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases.  N Engl J Med. 1997;  336 1066-1071
  • 11 Henn V, Slupsky J R, Grafe M et al.. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.  Nature. 1998;  391 591-594
  • 12 Yeo E L, Sheppard J A, Feuerstein I A. Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model).  Blood. 1994;  83 2498-2507
  • 13 Lindmark E, Tenno T, Siegbahn A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression.  Arterioscler Thromb Vasc Biol. 2000;  20 2322-2328
  • 14 Lutgens E, Gorelik L, Daemen M J et al.. Requirement for CD154 in the progression of atherosclerosis.  Nat Med. 1999;  5 1313-1316
  • 15 Schecter A D, Rollins B J, Zhang Y J et al.. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells.  J Biol Chem. 1997;  272 28568-28573
  • 16 Davies M J, Woolf N, Rowles P M, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries.  Br Heart J. 1988;  60 459-464
  • 17 Sambola A, Osende J, Hathcock J et al.. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity.  Circulation. 2003;  107 973-977
  • 18 Raines E W. PDGF and cardiovascular disease.  Cytokine Growth Factor Rev. 2004;  15 237-254
  • 19 Galis Z S, Sukhova G K, Lark M W, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques.  J Clin Invest. 1994;  94 2493-2503
  • 20 Hutter R, Valdiviezo C, Sauter B V et al.. Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis.  Circulation. 2004;  109 2001-2008
  • 21 Bea F, Puolakkainen M H, McMillen T et al.. Chlamydia pneumoniae induces tissue factor expression in mouse macrophages via activation of Egr-1 and the MEK-ERK1/2 pathway.  Circ Res. 2003;  92 394-401
  • 22 Schonbeck U, Mach F, Sukhova G K et al.. CD40 ligation induces tissue factor expression in human vascular smooth muscle cells.  Am J Pathol. 2000;  156 7-14
  • 23 Aikawa M, Voglic S J, Sugiyama S et al.. Dietary lipid lowering reduces tissue factor expression in rabbit atheroma.  Circulation. 1999;  100 1215-1222
  • 24 Son J W, Koh K K, Ahn J Y et al.. Effects of statin on plaque stability and thrombogenicity in hypercholesterolemic patients with coronary artery disease.  Int J Cardiol. 2003;  88 77-82
  • 25 Hosono M, de Boer O J, van der Wal A C et al.. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction.  Atherosclerosis. 2003;  168 73-80
  • 26 Moreno P R, Bernardi V H, Lopez-Cuellar J et al.. Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes.  Circulation. 1996;  94 3090-3097
  • 27 Cirillo P, Cali G, Golino P et al.. Tissue factor binding of activated factor VII triggers smooth muscle cell proliferation via extracellular signal-regulated kinase activation.  Circulation. 2004;  109 2911-2916
  • 28 Schecter A D, Spirn B, Rossikhina M et al.. Release of active tissue factor by human arterial smooth muscle cells.  Circ Res. 2000;  87 126-132
  • 29 Taubman M B, Fallon J T, Schecter A D et al.. Tissue factor in the pathogenesis of atherosclerosis.  Thromb Haemost. 1997;  78 200-204
  • 30 Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet J M, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity.  Circulation. 1999;  99 348-353
  • 31 van Oostrom O, Velema E, Schoneveld A H et al.. Age-related changes in plaque composition: a study in patients suffering from carotid artery stenosis.  Cardiovasc Pathol. 2005;  14 126-134
  • 32 van der Wal A C, Becker A E, van der Loos C M, Das P K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology.  Circulation. 1994;  89 36-44
  • 33 Davies M J. Going from immutable to mutable atherosclerotic plaques.  Am J Cardiol. 2001;  88 2F-9F
  • 34 Burke A P, Farb A, Malcom G T, Liang Y H, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly.  N Engl J Med. 1997;  336 1276-1282
  • 35 Fernandez-Ortiz A, Badimon J J, Falk E et al.. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture.  J Am Coll Cardiol. 1994;  23 1562-1569
  • 36 Kolodgie F D, Gold H K, Burke A P et al.. Intraplaque hemorrhage and progression of coronary atheroma.  N Engl J Med. 2003;  349 2316-2325
  • 37 Farb A, Burke A P, Tang A L et al.. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death.  Circulation. 1996;  93 1354-1363
  • 38 Henriques de Gouveia R, van der Wal A C, van der Loos C M, Becker A E. Sudden unexpected death in young adults. Discrepancies between initiation of acute plaque complications and the onset of acute coronary death.  Eur Heart J. 2002;  23 1433-1440
  • 39 Maseri A, Fuster V. Is there a vulnerable plaque?.  Circulation. 2003;  107 2068-2071
  • 40 de Boer O J, van der Wal A C, Teeling P, Becker A E. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization?.  Cardiovasc Res. 1999;  41 443-449
  • 41 Moreno P R, Purushothaman K R, Fuster V et al.. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability.  Circulation. 2004;  110 2032-2038
  • 42 Meijer-Jorna L B, Mekkes J R, van der Wal A C. Platelet involvement in cutaneous small vessel vasculitis.  J Cutan Pathol. 2002;  29 176-180
  • 43 Koomagi R, Volm M. Tissue-factor expression in human non-small-cell lung carcinoma measured by immunohistochemistry: correlation between tissue factor and angiogenesis.  Int J Cancer. 1998;  79 19-22
  • 44 Abdulkadir S A, Carvalhal G F, Kaleem Z et al.. Tissue factor expression and angiogenesis in human prostate carcinoma.  Hum Pathol. 2000;  31 443-447
  • 45 Carmeliet P, Mackman N, Moons L et al.. Role of tissue factor in embryonic blood vessel development.  Nature. 1996;  383 73-75
  • 46 Jeanpierre E, Le Tourneau T, Six I et al.. Dietary lipid lowering modifies plaque phenotype in rabbit atheroma after angioplasty: a potential role of tissue factor.  Circulation. 2003;  108 1740-1745

Allard C van der WalM.D. Ph.D. 

Academic Medical Center, University of Amsterdam

Meibergdreef 9, 1105AZ Amsterdam, The Netherlands

Email: a.c.vanderwal@amc.uva.nl

    >