Semin Thromb Hemost 2006; 32: 003-015
DOI: 10.1055/s-2006-939550
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

An Overview of the Structure and Function of Thrombin

Earl W. Davie1 , John D. Kulman1
  • 1Department of Biochemistry, University of Washington, Seattle, Washington
Further Information

Publication History

Publication Date:
02 May 2006 (online)

ABSTRACT

The fundamental importance of thrombin in biology and medicine has made it one of the most extensively studied of all proteases. Thrombin performs essential functions in vertebrate biology as the central enzyme involved in blood coagulation and platelet aggregation, and as a mitogen and secretagogue for a variety of cell types. Thrombin is synthesized in the liver and secreted into the general circulation in an inactive zymogen form (prothrombin), a complex multidomain glycoprotein that is activated to yield thrombin at sites of vascular injury by limited proteolysis following upstream activation of the coagulation cascade. Thrombin shares its general architecture and catalytic mechanism with those of pancreatic trypsin, the prototypical digestive serine protease. However, the specificity of thrombin toward substrates and cofactors, as well as its spatiotemporal regulation by effectors and inhibitors, is directed by features of the molecule that distinguish it from relatively nonspecific serine proteases like trypsin. Structural and functional studies have demonstrated the presence of surface loops that partially occlude the active site and make specific contacts with residues adjacent to the scissile bond of substrates. Specificity toward macromolecular substrates and cofactors is additionally enhanced by anion-binding exosites that are spatially distinct from the active site. More than five decades of multidisciplinary research on thrombin have produced an abundance of functional and structural information and provided a robust framework for understanding the role of thrombin in vertebrate biology.

REFERENCES

  • 1 Drake T A, Morrissey J H, Edgington T S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis.  Am J Pathol. 1989;  134 1087-1097
  • 2 Fleck R A, Rao L V, Rapaport S I, Varki N. Localization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody.  Thromb Res. 1990;  59 421-437
  • 3 Davie E W, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation.  Biochemistry. 1991;  30 10363-10370
  • 4 Mosesson M W. Fibrinogen and fibrin structure and functions.  J Thromb Haemost. 2005;  3 1894-1904
  • 5 Lorand L. Physiological roles of fibrinogen and fibrin.  Fed Proc. 1965;  24 784-793
  • 6 Chen R, Doolittle R F. Cross-linking sites in human and bovine fibrin.  Biochemistry. 1971;  10 4487-4491
  • 7 Chen R, Doolittle R F. Identification of the polypeptide chains involved in the cross-linking of fibrin.  Proc Natl Acad Sci USA. 1969;  63 420-427
  • 8 Bajzar L, Manuel R, Nesheim M E. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor.  J Biol Chem. 1995;  270 14477-14484
  • 9 Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces.  J Biol Chem. 1991;  266 7353-7358
  • 10 Vehar G A, Davie E W. Preparation and properties of bovine factor VIII (antihemophilic factor).  Biochemistry. 1980;  19 401-410
  • 11 Fulcher C A, Roberts J R, Zimmerman T S. Thrombin proteolysis of purified factor VIII procoagulant protein: correlation of activation with generation of a specific polypeptide.  Blood. 1983;  61 807-811
  • 12 Esmon C T. The subunit structure of thrombin-activated factor V. Isolation of activated factor V, separation of subunits, and reconstitution of biological activity.  J Biol Chem. 1979;  254 964-973
  • 13 Nesheim M E, Mann K G. Thrombin-catalyzed activation of single chain bovine factor V.  J Biol Chem. 1979;  254 1326-1334
  • 14 Suzuki K, Dahlbäck B, Stenflo J. Thrombin-catalyzed activation of human coagulation factor V.  J Biol Chem. 1982;  257 6556-6564
  • 15 Bevers E M, Comfurius P, van Rijn J L, Hemker H C, Zwaal R F. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets.  Eur J Biochem. 1982;  122 429-436
  • 16 Majerus P W, Miletich J P. Relationships between platelets and coagulation factors in hemostasis.  Annu Rev Med. 1978;  29 41-49
  • 17 Vu T K, Hung D T, Wheaton V I, Coughlin S R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation.  Cell. 1991;  64 1057-1068
  • 18 Kahn M L, Zheng Y W, Huang W et al.. A dual thrombin receptor system for platelet activation.  Nature. 1998;  394 690-694
  • 19 Xu W F, Andersen H, Whitmore T E et al.. Cloning and characterization of human protease-activated receptor 4.  Proc Natl Acad Sci USA. 1998;  95 6642-6646
  • 20 De Candia E, Hall S W, Rutella S, Landolfi R, Andrews R K, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets.  J Biol Chem. 2001;  276 4692-4698
  • 21 Adam F, Guillin M C, Jandrot-Perrus M. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin.  Eur J Biochem. 2003;  270 2959-2970
  • 22 Esmon C T. The roles of protein C and thrombomodulin in the regulation of blood coagulation.  J Biol Chem. 1989;  264 4743-4746
  • 23 Coughlin S R. Thrombin signalling and protease-activated receptors.  Nature. 2000;  407 258-264
  • 24 Hattori R, Hamilton K K, Fugate R D, McEver R P, Sims P J. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140.  J Biol Chem. 1989;  264 7768-7771
  • 25 Daniel T O, Gibbs V C, Milfay D F, Garovoy M R, Williams L T. Thrombin stimulates c-sis gene expression in microvascular endothelial cells.  J Biol Chem. 1986;  261 9579-9582
  • 26 Colotta F, Sciacca F L, Sironi M, Luini W, Rabiet M J, Mantovani A. Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin.  Am J Pathol. 1994;  144 975-985
  • 27 Kranzhofer R, Clinton S K, Ishii K, Coughlin S R, Fenton II J W, Libby P. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes.  Circ Res. 1996;  79 286-294
  • 28 McNamara C A, Sarembock I J, Gimple L W, Fenton II J W, Coughlin S R, Owens G K. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor.  J Clin Invest. 1993;  91 94-98
  • 29 Chen L B, Buchanan J M. Mitogenic activity of blood components. I. Thrombin and prothrombin.  Proc Natl Acad Sci USA. 1975;  72 131-135
  • 30 Rosenberg R D, Damus P S. The purification and mechanism of action of human antithrombin-heparin cofactor.  J Biol Chem. 1973;  248 6490-6505
  • 31 Tollefsen D M, Majerus D W, Blank M K. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma.  J Biol Chem. 1982;  257 2162-2169
  • 32 Baker J B, Low D A, Simmer R L, Cunningham D D. Protease-nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells.  Cell. 1980;  21 37-45
  • 33 Bagdy D, Barabas E, Graf L, Petersen T E, Magnusson S. Hirudin.  Methods Enzymol. 1976;  45 669-678
  • 34 Strube K H, Kroger B, Bialojan S, Otte M, Dodt J. Isolation, sequence analysis, and cloning of haemadin. An anticoagulant peptide from the Indian leech.  J Biol Chem. 1993;  268 8590-8595
  • 35 Friedrich T, Kroger B, Bialojan S et al.. A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus .  J Biol Chem. 1993;  268 16216-16222
  • 36 Butkowski R J, Elion J, Downing M R, Mann K G. Primary structure of human prethrombin 2 and alpha-thrombin.  J Biol Chem. 1977;  252 4942-4957
  • 37 Magnusson S, Sottrup-Jensen L, Claeys H, Zajdel M, Petersen T E. Proceedings: Complete primary structure of prothrombin. Partial primary structures of plasminogen and hirudin.  Thromb Diath Haemorrh. 1975;  34 562-563
  • 38 MacGillivray R T, Degen S J, Chandra T, Woo S L, Davie E W. Cloning and analysis of a cDNA coding for bovine prothrombin.  Proc Natl Acad Sci USA. 1980;  77 5153-5157
  • 39 Degen S J, MacGillivray R T, Davie E W. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin.  Biochemistry. 1983;  22 2087-2097
  • 40 MacGillivray R T, Davie E W. Characterization of bovine prothrombin mRNA and its translation product.  Biochemistry. 1984;  23 1626-1634
  • 41 Degen S J, Davie E W. Nucleotide sequence of the gene for human prothrombin.  Biochemistry. 1987;  26 6165-6177
  • 42 Foster D C, Rudinski M S, Schach B G et al.. Propeptide of human protein C is necessary for gamma-carboxylation.  Biochemistry. 1987;  26 7003-7011
  • 43 Wu S M, Cheung W F, Frazier D, Stafford D W. Cloning and expression of the cDNA for human gamma-glutamyl carboxylase.  Science. 1991;  254 1634-1636
  • 44 Stenflo J, Fernlund P, Egan W, Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin.  Proc Natl Acad Sci USA. 1974;  71 2730-2733
  • 45 Nelsestuen G L, Zytkovicz T H, Howard J B. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin.  J Biol Chem. 1974;  249 6347-6350
  • 46 Hansson K, Stenflo J. Post-translational modifications in proteins involved in blood coagulation.  J Thromb Haemost. 2005;  3 2633-2648
  • 47 Sadowski J A, Esmon C T, Suttie J W. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system.  J Biol Chem. 1976;  251 2770-2776
  • 48 Cain D, Hutson S M, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.  J Biol Chem. 1997;  272 29068-29075
  • 49 Fasco M J, Principe L M. Vitamin K1 hydroquinone formation catalyzed by a microsomal reductase system.  Biochem Biophys Res Commun. 1980;  97 1487-1492
  • 50 MacNicoll A D, Nadian A K, Townsend M G. Inhibition by warfarin of liver microsomal vitamin K-reductase in warfarin-resistant and susceptible rats.  Biochem Pharmacol. 1984;  33 1331-1336
  • 51 Ren P, Stark P Y, Johnson R L, Bell R G. Mechanism of action of anticoagulants: correlation between the inhibition of prothrombin synthesis and the regeneration of vitamin K1 from vitamin K1 epoxide.  J Pharmacol Exp Ther. 1977;  201 541-546
  • 52 Stenflo J. Vitamin K and the biosynthesis of prothrombin. IV. Isolation of peptides containing prosthetic groups from normal prothrombin and the corresponding peptides from dicoumarol-induced prothrombin.  J Biol Chem. 1974;  249 5527-5535
  • 53 Mizuochi T, Yamashita K, Fujikawa K, Kisiel W, Kobata A. The carbohydrate of bovine prothrombin. Occurrence of Gal beta 1 leads to 3GlcNAc grouping in asparagine-linked sugar chains.  J Biol Chem. 1979;  254 6419-6425
  • 54 Mizuochi T, Fujii J, Kisiel W, Kobata A. Studies on the structures of the carbohydrate moiety of human prothrombin.  J Biochem (Tokyo). 1981;  90 1023-1031
  • 55 Nilsson B, Horne III M K, Gralnick H R. The carbohydrate of human thrombin: structural analysis of glycoprotein oligosaccharides by mass spectrometry.  Arch Biochem Biophys. 1983;  224 127-133
  • 56 Nesheim M E, Taswell J B, Mann K G. The contribution of bovine Factor V and Factor Va to the activity of prothrombinase.  J Biol Chem. 1979;  254 10952-10962
  • 57 Krishnaswamy S, Church W R, Nesheim M E, Mann K G. Activation of human prothrombin by human prothrombinase. Influence of factor Va on the reaction mechanism.  J Biol Chem. 1987;  262 3291-3299
  • 58 Brufatto N, Nesheim M E. Analysis of the kinetics of prothrombin activation and evidence that two equilibrating forms of prothrombinase are involved in the process.  J Biol Chem. 2003;  278 6755-6764
  • 59 Fenton II J W, Fasco M J, Stackrow A B. Human thrombins. Production, evaluation, and properties of alpha-thrombin.  J Biol Chem. 1977;  252 3587-3598
  • 60 Gorman J J, Castaldi P A, Shaw D C. The structure of human thrombin in relation to autolytic degradation.  Biochim Biophys Acta. 1976;  439 1-16
  • 61 Boissel J P, Le Bonniec B, Rabiet M J, Labie D, Elion J. Covalent structures of beta and gamma autolytic derivatives of human alpha-thrombin.  J Biol Chem. 1984;  259 5691-5697
  • 62 Berliner L J. Structure-function relationships in human alpha- and gamma-thrombins.  Mol Cell Biochem. 1984;  61 159-172
  • 63 Lundblad R L, Noyes C M, Mann K G, Kingdon H S. The covalent differences between bovine alpha- and beta-thrombin. A structural explanation for the changes in catalytic activity.  J Biol Chem. 1979;  254 8524-8528
  • 64 Hofsteenge J, Braun P J, Stone S R. Enzymatic properties of proteolytic derivatives of human alpha-thrombin.  Biochemistry. 1988;  27 2144-2151
  • 65 Banfield D K, MacGillivray R T. Partial characterization of vertebrate prothrombin cDNAs: amplification and sequence analysis of the B chain of thrombin from nine different species.  Proc Natl Acad Sci USA. 1992;  89 2779-2783
  • 66 Kraut J. Serine proteases: structure and mechanism of catalysis.  Annu Rev Biochem. 1977;  46 331-358
  • 67 Fehlhammer H, Bode W, Huber R. Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin.  J Mol Biol. 1977;  111 415-438
  • 68 Bode W, Turk D, Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.  Protein Sci. 1992;  1 426-471
  • 69 Stubbs M T, Bode W. The clot thickens: clues provided by thrombin structure.  Trends Biochem Sci. 1995;  20 23-28
  • 70 Bode W, Mayr I, Baumann U, Huber R, Stone S R, Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment.  EMBO J. 1989;  8 3467-3475
  • 71 Lottenberg R, Hall J A, Blinder M, Binder E P, Jackson C M. The action of thrombin on peptide p-nitroanilide substrates. Substrate selectivity and examination of hydrolysis under different reaction conditions.  Biochim Biophys Acta. 1983;  742 539-557
  • 72 Le Bonniec B F, MacGillivray R T, Esmon C T. Thrombin Glu-39 restricts the P′3 specificity to nonacidic residues.  J Biol Chem. 1991;  266 13796-13803
  • 73 Le Bonniec B F, Myles T, Johnson T, Knight C G, Tapparelli C, Stone S R. Characterization of the P2′ and P3′ specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.  Biochemistry. 1996;  35 7114-7122
  • 74 Marque P E, Spuntarelli R, Juliano L, Aiach M, Le Bonniec B F. The role of Glu(192) in the allosteric control of the S(2)′ and S(3)′ subsites of thrombin.  J Biol Chem. 2000;  275 809-816
  • 75 Backes B J, Harris J L, Leonetti F, Craik C S, Ellman J A. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin.  Nat Biotechnol. 2000;  18 187-193
  • 76 Bianchini E P, Louvain V B, Marque P E, Juliano M A, Juliano L, Le Bonniec B F. Mapping of the catalytic groove preferences of factor Xa reveals an inadequate selectivity for its macromolecule substrates.  J Biol Chem. 2002;  277 20527-20534
  • 77 Le Bonniec B F, Guinto E R, MacGillivray R T, Stone S R, Esmon C T. The role of thrombin's Tyr-Pro-Pro-Trp motif in the interaction with fibrinogen, thrombomodulin, protein C, antithrombin III, and the Kunitz inhibitors.  J Biol Chem. 1993;  268 19055-19061
  • 78 Dang Q D, Sabetta M, Di Cera E. Selective loss of fibrinogen clotting in a loop-less thrombin.  J Biol Chem. 1997;  272 19649-19651
  • 79 Le Bonniec B F, Guinto E R, Esmon C T. Interaction of thrombin des-ETW with antithrombin III, the Kunitz inhibitors, thrombomodulin and protein C. Structural link between the autolysis loop and the Tyr-Pro-Pro-Trp insertion of thrombin.  J Biol Chem. 1992;  267 19341-19348
  • 80 Di Cera E, Guinto E R, Vindigni A et al.. The Na+ binding site of thrombin.  J Biol Chem. 1995;  270 22089-22092
  • 81 Pineda A O, Carrell C J, Bush L A et al.. Molecular dissection of Na+ binding to thrombin.  J Biol Chem. 2004;  279 31842-31853
  • 82 Krem M M, Cera E D. Evolution of enzyme cascades from embryonic development to blood coagulation.  Trends Biochem Sci. 2002;  27 67-74
  • 83 Krem M M, Di Cera E. Molecular markers of serine protease evolution.  EMBO J. 2001;  20 3036-3045
  • 84 Tsiang M, Jain A K, Dunn K E, Rojas M E, Leung L L, Gibbs C S. Functional mapping of the surface residues of human thrombin.  J Biol Chem. 1995;  270 16854-16863
  • 85 Pechik I, Madrazo J, Mosesson M W, Hernandez I, Gilliland G L, Medved L. Crystal structure of the complex between thrombin and the central “E” region of fibrin.  Proc Natl Acad Sci USA. 2004;  101 2718-2723
  • 86 Mathews I I, Padmanabhan K P, Ganesh V et al.. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes.  Biochemistry. 1994;  33 3266-3279
  • 87 Esmon C T, Lollar P. Involvement of thrombin anion-binding exosites 1 and 2 in the activation of factor V and factor VIII.  J Biol Chem. 1996;  271 13882-13887
  • 88 Myles T, Yun T H, Hall S W, Leung L L. An extensive interaction interface between thrombin and factor V is required for factor V activation.  J Biol Chem. 2001;  276 25143-25149
  • 89 Myles T, Yun T H, Leung L L. Structural requirements for the activation of human factor VIII by thrombin.  Blood. 2002;  100 2820-2826
  • 90 Fuentes-Prior P, Iwanaga Y, Huber R et al.. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex.  Nature. 2000;  404 518-525
  • 91 Ye J, Liu L W, Esmon C T, Johnson A E. The fifth and sixth growth factor-like domains of thrombomodulin bind to the anion-binding exosite of thrombin and alter its specificity.  J Biol Chem. 1992;  267 11023-11028
  • 92 De Cristofaro R, De Candia E, Landolfi R, Rutella S, Hall S W. Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib.  Biochemistry. 2001;  40 13268-13273
  • 93 Sheehan J P, Wu Q, Tollefsen D M, Sadler J E. Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. Interaction with the anion-binding exosite determines heparin cofactor II specificity.  J Biol Chem. 1993;  268 3639-3645
  • 94 Stone S R, Braun P J, Hofsteenge J. Identification of regions of alpha-thrombin involved in its interaction with hirudin.  Biochemistry. 1987;  26 4617-4624
  • 95 Rydel T J, Tulinsky A, Bode W, Huber R. Refined structure of the hirudin-thrombin complex.  J Mol Biol. 1991;  221 583-601
  • 96 Rydel T J, Ravichandran K G, Tulinsky A et al.. The structure of a complex of recombinant hirudin and human alpha-thrombin.  Science. 1990;  249 277-280
  • 97 Li W, Johnson D J, Esmon C T, Huntington J A. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin.  Nat Struct Mol Biol. 2004;  11 857-862
  • 98 Dumas J J, Kumar R, Seehra J, Somers W S, Mosyak L. Crystal structure of the GpIb alpha-thrombin complex essential for platelet aggregation.  Science. 2003;  301 222-226
  • 99 Richardson J L, Kroger B, Hoeffken W et al.. Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor.  EMBO J. 2000;  19 5650-5660
  • 100 Pettersen E F, Goddard T D, Huang C C et al.. UCSF Chimera-a visualization system for exploratory research and analysis.  J Comput Chem. 2004;  25 1605-1612

John D KulmanPh.D. 

Senior Research Fellow, Department of Biochemistry, University of Washington

Box 357350, Seattle, WA 98195-7350

Email: jkulman@u.washington.edu

    >