Horm Metab Res 2006; 38(6): 397-404
DOI: 10.1055/s-2006-944544
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Short-term and Long-term Effects of Guar on Postprandial Plasma Glucose, Insulin and Glucagon-like Peptide 1 Concentration in Healthy Rats

P.  G.  Prieto1 , J.  Cancelas1 , M.  L.  Villanueva-Peñacarrillo1 , W.  J.  Malaisse2 , I.  Valverde1
  • 1Metabolism, Nutrition and Hormones, Fundación Jiménez Díaz, Madrid, Spain
  • 2Laboratory of Experimental Hormonology, Brussels Free University, Brussels, Belgium
Further Information

Publication History

Received 24 October 2005

Accepted after revision 16 January 2006

Publication Date:
06 July 2006 (online)

Abstract

Ingestion of guar gum decreases postprandial glycemia and insulinemia and improves sensitivity to insulin in diabetic patients and several animal models of diabetes. The aim of the present study was to compare the short-term and long-term effects of guar on plasma insulin and glucagon-like peptide 1 concentration in healthy rats. In the short-term experiments, the concomitant intragastric administration of glucose and guar reduced the early increment in plasma glucose, insulin and glucagon-like peptide 1 concentration otherwise induced by glucose alone. Comparable findings were made after twelve days of meal training exposing the rats to either a control or guar-enriched diet for fifteen minutes. Mean plasma glucose concentrations were lower while mean insulin concentrations were higher in the guar group than in the controls according to intragastric glucose tolerance tests conducted in overnight fasted rats maintained for 19 to 36 days on either the control or guar-enriched diet. The intestinal content of glucagon-like peptide 1 at the end of the experiments was also lower in the guar group. Changes in body weight over 62 days of observation were comparable in the control and guar rats. Thus, long-term intake of guar improves glucose tolerance and insulin response to glucose absorption, without improving insulin sensitivity, in healthy rats.

References

  • 1 Sierra M, Garcia J J, Fernandez N, Diez M J, Calle A P, Sahagun A M. Effects of ispaghula husk and guar gum on postprandial glucose and insulin concentrations in healthy subjects.  Eur J Clin Nutr. 2001;  55 235-243.
  • 2 Fairchild R M, Ellis P R, Byrne A J, Luzio S D, Mir M A. A new breakfast cereal containing guar gum reduces postprandial plasma glucose and insulin concentrations in normal-weight human subjects.  Br J Nutr. 1996;  76 63-73
  • 3 Braaten J T, Wood P J, Scott F W, Riedel K D, Poste L M, Collins M W. Oat gum lowers glucose and insulin after an oral glucose load.  Am J Clin Nutr. 1991;  53 1425-1430
  • 4 Kirsten R, Nelson K, Storck J, Hubner-Steiner U, Speck U. Influence of two guar preparations on glucose and insulin levels during a glucose tolerance test in healthy volunteers.  Int J Clin Pharmacol Ther Toxicol. 1991;  29 19-22
  • 5 Morgan L M, Tredger J A, Wright J, Marks V. The effect of soluble- and insoluble-fibre supplementation on post-prandial glucose tolerance, insulin and gastric inhibitory polypeptide secretion in healthy subjects.  Br J Nutr. 1990;  64 103-110
  • 6 Torsdottir I, Alpsten M, Andersson H, Einarsson S. Dietary guar gum effects on postprandial blood glucose, insulin and hydroxyproline in humans.  J Nutr. 1989;  119 1925-1931
  • 7 Russo A, Stevens J E, Wilson T, Wells F, Tonkin A, Horowitz M, Jones K L. Guar attenuates fall in postprandial blood pressure and slows gastric emptying of oral glucose in type 2 diabetes.  Dig Dis Sci. 2003;  48 1221-1229
  • 8 Landin K, Holm G, Tengborn L, Smith U. Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men.  Am J Clin Nutr. 1992;  56 1061-1065
  • 9 Lafrance L, Rabasa-Lhoret R, Poisson D, Ducros F, Chiasson J L. Effects of different glycaemic index foods and dietary fibre intake on glycaemic control in type 1 diabetic patients on intensive insulin therapy.  Diabet Med. 1998;  15 972-978
  • 10 Groop P H, Aro A, Stenman S, Groop L. Long-term effects of guar gum in subjects with non-insulin-dependent diabetes mellitus.  Am J Clin Nutr. 1993;  58 513-518
  • 11 Vuorinen-Markkola H, Sinisalo M, Koivisto V A. Guar gum in insulin-dependent diabetes: effects on glycemic control and serum lipoproteins.  Am J Clin Nutr. 1992;  56 1056-1060
  • 12 Ebeling P, Yki-Jarvinen H, Aro A, Helve E, Sinisalo M, Koivisto V A. Glucose and lipid metabolism and insulin sensitivity in type 1 diabetes: the effect of guar gum.  Am J Clin Nutr. 1988;  48 98-103
  • 13 Ellis P R, Roberts F G, Low A G, Morgan L M. The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta.  Br J Nutr. 1995;  74 539-556
  • 14 Nunes C S, Malmlof K. Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig.  Br J Nutr. 1992;  68 693-700
  • 15 Begin F, Vachon C, Jones J D, Wood P J, Savoie L. Effect of dietary fibers on glycemia and insulinemia and on gastrointestinal function in rats.  Can J Physiol Pharmacol. 1989;  67 1265-1271
  • 16 Vachon C, Jones J D, Wood P J, Savoie L. Concentration effect of soluble dietary fibers on postprandial glucose and insulin in the rat.  Can J Physiol Pharmacol. 1988;  66 801-806
  • 17 Cameron-Smith D, Habito R, Barnett M, Collier G R. Dietary guar gum improves insulin sensitivity in streptozotocin-induced diabetic rats.  J Nutr. 1997;  127 359-364
  • 18 Suzuki T, Hara H. Ingestion of guar gum hydrolysate, a soluble and fermentable nondigestible saccharide, improves glucose intolerance and prevents hypertriglyceridemia in rats fed fructose.  J Nutr. 2004;  134 1942-1947
  • 19 Efendic S, Portwood N. Overview of incretin hormones.  Horm Metab Res. 2004;  36 742-746
  • 20 Dhillo W S, Bloom S R. Gastrointestinal hormones and regulation of food intake.  Horm Metab Res. 2004;  36 846-851
  • 21 Adam T C, Westerterp-Plantenga M S. Nutrient-stimulated GLP-1 release in normal-weight men and women.  Horm Metab Res. 2005;  37 111-117
  • 22 Valverde I, Villanueva-Penacarrillo M L, Malaisse W J. Pancreatic and extrapancreatic effects of GLP-1.  Diabetes Metab. 2002;  28 3S85-3S89
  • 23 Bergmeyer H U, Berndt E. Glucose determination with glucose oxidase and peroxidase. In: HU Bergmeyer (ed) Methods of Enzymatic Analysis. New York; Academic Press 1974: 1205-1215
  • 24 Valverde I, Barreto M, Malaisse W J. Stimulation by D-glucose of protein biosynthesis in tumoral insulin-producing cells (RINm5F line).  Endocrinology. 1988;  122 1443-1448
  • 25 Harris V, Faloona G R, Unger R H. Glucagon. In: BM Jaffe and HR Behrman (eds) Methods of Hormone Radioimmunossay. New York; Academic Press 1979: 643-656
  • 26 Orskov C, Holst J J. Radio-immunoassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2).  Scand J Clin Lab Invest. 1987;  47 165-174
  • 27 Cancelas J, Sancho V, Villanueva-Peñacarrillo M L, Courtois P, Scott F, Valverde I, Malaisse W J. GLP-1 content of the intestinal tract in adult rats injected with streptozotocin either during the neonatal period or seven days before sacrifice.  Endocrine. 2002;  19 279-286
  • 28 Grey N J, Goldring S, Kipnis D M. The effect of fasting, diet, and actinomycin D on insulin secretion in the rat.  J Clin Invest. 1970;  49 881-885
  • 29 Vinik A I, Jenkins D J. Dietary fiber in management of diabetes.  Diabetes Care. 1988;  11 160-173

Dr. Isabel Valverde

Dpto. Metabolismo, Nutrición y Hormonas

Fundación Jiménez Díaz · Avda. Reyes Católicos 2 · 28040 Madrid

Phone: +34 915504899

Fax: +34 915440247 ·

Email: ivalverde@fjd.es

    >