Aktuelle Dermatologie 2006; 32(11): 474-480
DOI: 10.1055/s-2006-944873
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Proapoptotische Strategien gegen Melanomzellen

Proapoptotic Strategies against Melanoma CellsJ.  Eberle1 , B.  M.  Kurbanov1
  • 1Charité - Universitätsmedizin Berlin
    Klinik für Dermatologie, Venerologie und Allergologie HTCC - Haut Tumor Centrum Charité
Further Information

Publication History

Publication Date:
14 November 2006 (online)

Zusammenfassung

Die Apoptose stellt einen grundlegenden Mechanismus zur Aufrechterhaltung der zellulären Homöostase dar. Intrinsische proapoptotische Signalwege werden durch p53 induziert und greifen insbesondere auf der Ebene der Mitochondrien an. Demgegenüber basiert die extrinsische Induktion der Apoptose maßgeblich auf der Bindung von Todesliganden (TNF-alpha, CD95L/FasL, TRAIL) an ihre Rezeptoren sowie auf der Induktion der Caspasen-Kaskade. Für die Tumorprogression sowie für die Therapieresistenz maligner Tumoren ist die Inaktivierung proapoptotischer Signalwege eine notwendige Voraussetzung. So wurden auch verschiedene Mechanismen der Apoptoseresistenz für das im hohen Maße therapieresistente maligne Melanom identifiziert. Ziel verschiedener neuer Therapiekonzepte gegen Krebs ist daher insbesondere die Überwindung dieser Apoptoseresistenz, wobei Todesliganden wichtige Hoffnungsträger darstellen. Insbesondere TRAIL (TNF-related apoptosis-inducing ligand) hat aufgrund seiner hohen selektiven Effektivität gegen Tumorzellen bereits Eingang in klinische Studien gefunden. Das maligne Melanom war hierbei allerdings bisher weitgehend ausgeschlossen. TRAIL bindet an die zwei agonistischen Todesrezeptoren TRAIL-R1/DR4 und TRAIL-R2/DR5. Neue Befunde an Melanomzelllinien und Biopsien von Melanom-Primärtumoren zeigten, dass TRAIL in Melanomzellen über DR4 sehr effizient Apoptose induzieren kann und dass die Mehrzahl der Primärmelanome den DR4 stark exprimieren. Apoptose-gestützte Strategien stellen einen wichtigen Schritt zur Entwicklung effektiver Tumortherapien dar, und TRAIL könnte sich zu einer viel versprechenden Therapieoption auch beim malignen Melanom entwickeln.

Abstract

Apoptosis represents a basic mechanism for maintenance of cellular homeostasis. Intrinsic proapoptotic pathways are induced by p53 and employ especially the mitochondrial level. In contrast, the extrinsic induction of apoptosis is based on the binding of death ligands (TNF-alpha, CD95L/FasL, TRAIL) to their respective receptors and on induction of the caspase cascade. For tumor progression and for therapy resistance of malignant tumors, the inactivation of proapoptotic pathways is a prerequisite. Thus, several mechanisms of apoptosis resistance have been identified for the highly therapy resistant malignant melanoma. Therefore many new anti-cancer concepts aim especially to overcome this apoptosis resistance, and death ligands may supply promising strategies. Especially with TRAIL (TNF-related apoptosis-inducing ligand) several clinical studies have been initiated because of its high and selective efficiency against tumor cells. However, these studies so far largely excluded melanoma. TRAIL binds the two agonistic death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. New data on melanoma cell lines and biopsies revealed that TRAIL can efficiently induce apoptosis in melanoma cells via DR4, and the majority of primary melanomas do express DR4. Apoptosis-based strategies represent an important step in development of tumor therapies, and TRAIL may evolve into a promising therapeutic option also for melanoma.

Literatur

  • 1 Amiri K I, Horton L W, LaFleur B J, Sosman J A, Richmond A. Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma.  Cancer Res. 2004;  64 4912-4918
  • 2 Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily.  Nat Rev Cancer. 2002;  2 420-430
  • 3 Chappell D B, Zaks T Z, Rosenberg S A, Restifo N P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand.  Cancer Res. 1999;  59 59-62
  • 4 Cretney E, Takeda K, Yagita H, Glaccum M, Peschon J J, Smyth M J. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice.  J Immunol. 2002;  168 1356-1361
  • 5 Daniel P T, Schulze-Osthoff K, Belka C, Guner D. Guardians of cell death: the Bcl-2 family proteins.  Essays Biochem. 2003;  39 73-88
  • 6 Daniel P T, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy.  Leukemia. 2001;  15 1022-1032
  • 7 Di Pietro R, Zauli G. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L.  J Cell Physiol. 2004;  201 331-340
  • 8 Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer.  Virchows Arch. 2005;  446 475-482
  • 9 Eberle J, Fecker L F, Hossini A M, Wieder T, Daniel P T, Orfanos C E, Geilen C C. CD95/Fas signaling in human melanoma cells: conditional expression of CD95L/FasL overcomes the intrinsic apoptosis resistance of malignant melanoma and inhibits growth and progression of human melanoma xenotransplants.  Oncogene. 2003;  22 9131-9141
  • 10 Fecker L F, Geilen C C, Hossini A M, Schwarz C, Fechner H, Bartlett D L, Orfanos C E, Eberle J. Selective induction of apoptosis in melanoma cells by tyrosinase promoter-controlled CD95 ligand overexpression.  J Invest Dermatol. 2005;  124 221-228
  • 11 Fecker L F, Geilen C C, Tchernev G, Trefzer U, Assaf C, Kurbanov B M, Schwarz C, Daniel P T, Eberle J. Loss of proapoptotic Bcl-2-related multidomain proteins in primary melanomas is associated with poor prognosis.  J Invest Dermatol. 2006;  126 1366-1371
  • 12 Fischer U, Janicke R U, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates.  Cell Death Differ. 2003;  10 76-100
  • 13 Fischer U, Schulze-Osthoff K. Apoptosis-based therapies and drug targets.  Cell Death Differ. 2005;  12 942-961
  • 14 Franco A V, Zhang X D, Van Berkel E, Sanders J E, Zhang X Y, Thomas W D, Nguyen T, Hersey P. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells.  J Immunol. 2001;  166 5337-5345
  • 15 Fulda S, Debatin K M. 5-Aza-2"-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8.  Oncogene. 2006;  Epub ahead of print
  • 16 Grossman D, McNiff J M, Li F, Altieri D C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma.  J Invest Dermatol. 1999;  113 1076-1081
  • 17 Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French L E, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape.  Science. 1996;  274 1363-1366
  • 18 Hakansson A, Gustafsson B, Abdiu A, Krysander L, Hakansson L. Bcl-2 expression in metastatic malignant melanoma. Importance for the therapeutic efficacy of biochemotherapy.  Cancer Immunol Immunother. 2003;  52 249-254
  • 19 Hersey P, Zhang X D. How melanoma cells evade trail-induced apoptosis.  Nat Rev Cancer. 2001;  1 142-150
  • 20 Hofseth L J, Hussain S P, Harris C C. p53 : 25 years after its discovery.  Trends Pharmacol Sci. 2004;  25 177-181
  • 21 Hossini A M, Eberle J, Fecker L F, Orfanos C E, Geilen C C. Conditional expression of exogenous Bcl-X(S) triggers apoptosis in human melanoma cells in vitro and delays growth of melanoma xenografts.  FEBS Lett. 2003;  553 250-256
  • 22 Hossini A M, Geilen C C, Fecker L F, Daniel P T, Eberle J. A novel Bcl-x splice product, Bcl-xAK, triggers apoptosis in human melanoma cells without BH3 domain.  Oncogene. 2006;  25 2160-2169
  • 23 Hussein M R, Haemel A K, Wood G S. Apoptosis and melanoma: molecular mechanisms.  J Pathol. 2003;  199 275-288
  • 24 Igney F H, Krammer P H. Death and anti-death: tumour resistance to apoptosis.  Nat Rev Cancer. 2002;  2 277-288
  • 25 Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer J L, Schroter M, Burns K, Mattmann C, Rimoldi D, French L E, Tschopp J. Inhibition of death receptor signals by cellular FLIP.  Nature. 1997;  388 190-195
  • 26 Ivanov V N, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis.  Oncogene. 2003;  22 3152-3161
  • 27 Jansen B, Schlagbauer-Wadl H, Brown B D, Bryan R N, van Elsas A, Muller M, Wolff K, Eichler H G, Pehamberger H. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice.  Nat Med. 1998;  4 232-234
  • 28 Karin M, Greten F R. NF-kappaB: linking inflammation and immunity to cancer development and progression.  Nat Rev Immunol. 2005;  5 749-759
  • 29 Kasof G M, Gomes B C. Livin, a novel inhibitor of apoptosis protein family member.  J Biol Chem. 2001;  276 3238-3246
  • 30 Kazhdan I, Marciniak R A. Death receptor 4 (DR4) efficiently kills breast cancer cells irrespective of their sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).  Cancer Gene Ther. 2004;  11 691-698
  • 31 Kelley R F, Totpal K, Lindstrom S H, Mathieu M, Billeci K, Deforge L, Pai R, Hymowitz S G, Ashkenazi A. Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling.  J Biol Chem. 2005;  280 2205-2212
  • 32 Kerr J F, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.  Br J Cancer. 1972;  26 239-257
  • 33 Kichina J V, Rauth S, Das Gupta T K, Gudkov A V. Melanoma cells can tolerate high levels of transcriptionally active endogenous p53 but are sensitive to retrovirus-transduced p53.  Oncogene. 2003;  22 4911-4917
  • 34 Klasa R J, Gillum A M, Klem R E, Frankel S R. Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment.  Antisense Nucleic Acid Drug Dev. 2002;  12 193-213
  • 35 Kurbanov B M, Fecker L F, Geilen C C, Sterry W, Eberle J. Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kB but is related to downregulation of initiator caspases and DR4.  Submitted. 2006; 
  • 36 Kurbanov B M, Geilen C C, Fecker L F, Orfanos C E, Eberle J. Efficient TRAIL-R1/DR4-mediated apoptosis in melanoma cells by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).  J Invest Dermatol. 2005;  125 1010-1019
  • 37 LeBlanc H N, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors.  Cell Death Differ. 2003;  10 66-75
  • 38 Li-Weber M, Krammer P H. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system.  Semin Immunol. 2003;  15 145-157
  • 39 Los M, Stroh C, Janicke R U, Engels I H, Schulze-Osthoff K. Caspases: more than just killers?.  Trends Immunol. 2001;  22 31-34
  • 40 Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M, Peretz T, Mandelboim O, Ben Yehuda D. Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma.  Cancer Res. 2003;  63 6340-6349
  • 41 Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S. Lethal effect of the anti-Fas antibody in mice.  Nature. 1993;  364 806-809
  • 42 Oppermann M, Geilen C C, Fecker L F, Gillissen B, Daniel P T, Eberle J. Caspase-independent induction of apoptosis in human melanoma cells by the proapoptotic Bcl-2-related protein Nbk/Bik.  Oncogene. 2005;  24 7369-7380
  • 43 Peter M E, Krammer P H. The CD95(APO-1/Fas) DISC and beyond.  Cell Death Differ. 2003;  10 26-35
  • 44 Raisova M, Bektas M, Wieder T, Daniel P, Eberle J, Orfanos C E, Geilen C C. Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release.  FEBS Lett. 2000;  473 27-32
  • 45 Raisova M, Hossini A M, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel P T, Orfanos C E, Geilen C C. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis.  J Invest Dermatol. 2001;  117 333-340
  • 46 Reed J C, Pellecchia M. Apoptosis-based therapies for hematologic malignancies.  Blood. 2005;  106 408-418
  • 47 Richardson P G, Briemberg H, Jagannath S, Wen P Y, Barlogie B, Berenson J, Singhal S, Siegel D S, Irwin D, Schuster M, Srkalovic G, Alexanian R, Rajkumar S V, Limentani S, Alsina M, Orlowski R Z, Najarian K, Esseltine D, Anderson K C, Amato A A. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib.  J Clin Oncol. 2006;  24 3113-3120
  • 48 Rossi C R, Foletto M, Mocellin S, Pilati P L, Campana L, Ribello D, Lise M. TNF-based limb perfusion for cutaneous melanoma in transit metastases: suggestions for modification of the perfusional schedule.  J Exp Clin Cancer Res. 2003;  22 103-107
  • 49 Russell J H, Ley T J. Lymphocyte-mediated cytotoxicity.  Annu Rev Immunol. 2002;  20 323-370
  • 50 Satyamoorthy K, Chehab N H, Waterman M J, Lien M C, El Deiry W S, Herlyn M, Halazonetis T D. Aberrant regulation and function of wild-type p53 in radioresistant melanoma cells.  Cell Growth Differ. 2000;  11 467-474
  • 51 Shankar S, Chen X, Srivastava R K. Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo.  Prostate. 2005;  62 165-186
  • 52 Singh T R, Shankar S, Chen X, Asim M, Srivastava R K. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo.  Cancer Res. 2003;  63 5390-5400
  • 53 Sjostrom J, Bergh J. How apoptosis is regulated, and what goes wrong in cancer.  BMJ. 2001;  322 1538-1539
  • 54 Smyth M J, Takeda K, Hayakawa Y, Peschon J J, van den Brink M R, Yagita H. Nature's TRAIL - on a path to cancer immunotherapy.  Immunity. 2003;  18 1-6
  • 55 Soengas M S, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman J G, Gerald W L, Lazebnik Y A, Cordon-Cardo C, Lowe S W. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma.  Nature. 2001;  409 207-211
  • 56 Soengas M S, Lowe S W. Apoptosis and melanoma chemoresistance.  Oncogene. 2003;  22 3138-3151
  • 57 Strater J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Moller P, Lehnert T. Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter.  Clin Cancer Res. 2002;  8 3734-3740
  • 58 Takeda K, Yamaguchi N, Akiba H, Kojima Y, Hayakawa Y, Tanner J E, Sayers T J, Seki N, Okumura K, Yagita H, Smyth M J. Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy.  J Exp Med. 2004;  199 437-448
  • 59 Voorhees P M, Dees E C, O'Neil B, Orlowski R Z. The proteasome as a target for cancer therapy.  Clin Cancer Res. 2003;  9 6316-6325
  • 60 Walczak H, Miller R E, Ariail K, Gliniak B, Griffith T S, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin R G, Rauch C T, Schuh J C, Lynch D H. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo.  Nat Med. 1999;  5 157-163
  • 61 Wang S, El Deiry W S. TRAIL and apoptosis induction by TNF-family death receptors.  Oncogene. 2003;  22 8628-8633
  • 62 Wiley S R, Schooley K, Smolak P J, Din W S, Huang C P, Nicholl J K, Sutherland G R, Smith T D, Rauch C, Smith C A. Identification and characterization of a new member of the TNF family that induces apoptosis.  Immunity. 1995;  3 673-682
  • 63 Yagita H, Takeda K, Hayakawa Y, Smyth M J, Okumura K. TRAIL and its receptors as targets for cancer therapy.  Cancer Sci. 2004;  95 777-783
  • 64 Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer.  Cancer Gene Ther. 2005;  12 228-237
  • 65 Zhang X Y, Zhang X D, Borrow J M, Nguyen T, Hersey P. Translational control of tumor necrosis factor-related apoptosis-inducing ligand death receptor expression in melanoma cells.  J Biol Chem. 2004;  279 10606-10614

PD Dr. rer. nat. Jürgen Eberle

Charité - Universitätsmedizin Berlin
Klinik für Dermatologie, Venerologie und Allergologie
HTCC - Haut Tumor Centrum Charité
Campus Benjamin Franklin

Hindenburgdamm 30
12203 Berlin

Email: juergen.eberle@charite.de

    >