Semin Thromb Hemost 2006; 32: 032-038
DOI: 10.1055/s-2006-946913
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Future Aspects of Hemophilia Research and Care

Leonard A. Valentino1 , Friedrich Scheiflinger2
  • 1Associate Professor of Pediatrics, Director, RUSH Hemophilia and Thrombophilia Center, President, Hemophilia and Thrombosis Research Society, RUSH University Medical Center, Chicago, Illinois
  • 2Baxter BioScience, Vienna, Austria
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. November 2006 (online)

ABSTRACT

Key issues in the management of patients with hemophilia include a thorough understanding of the mechanisms of blood coagulation and the complications that follow recurrent joint bleeding. Monoclonal antibodies are powerful tools for dissecting the intrinsic coagulation pathway and deriving reagents that could lead, on the long term, to the identification of molecules that enhance, or perhaps even replace factor (F) VIII concentrates in the management of hemophilia A. In recent in vitro experiments, it was demonstrated that plasmatic thrombin generation and intrinsic FX activation was enhanced by each of two FIXa-specific monoclonal antibodies, one of which had FIXa-agonistic activity only, whereas the other enhanced the activity of the intrinsic FX-activating complex (FVIIIa/FIXa) by at least two distinct mechanisms. Hemophilic synovitis, an inflammatory and proliferative disorder in patients with hemophilia, is the result of bleeding into joints and can lead to debilitating arthritis and chronic arthropathy. A major causative factor in the development of hemophilic synovitis is blood-derived iron deposited in joints. FVIII-deficient knockout mice with trauma-induced hemarthrosis serve as a model system for hemophilic synovitis, reproducing the histological features observed in patients. In addition, this animal model recapitulates the observations made in vitro with synovial cell cultures stimulated by iron. These in vitro experiments suggested a role for iron as an agent capable of inducing proliferation and oncogene expression by human and murine synovial fibroblasts. A better understanding of iron-regulated pathways and oncogene expression may lay the groundwork for targeted molecular interventions in hemophilic synovitis.

REFERENCES

  • 1 Bolton-Maggs P H, Pasi K J. Haemophilias A and B.  Lancet. 2003;  361 1801-1809
  • 2 Valentino L A, Hakobyan N, Kazarian T, Jabbar K J, Jabbar A A. Experimental haemophilic synovitis: rationale and development of a murine model of human factor VIII deficiency.  Haemophilia. 2004;  10 280-287
  • 3 Roosendaal G, Vianen M E, Wenting M J et al.. Iron deposits and catabolic properties of synovial tissue from patients with haemophilia.  J Bone Joint Surg Br. 1998;  80 540-545
  • 4 Lan H H, Eustace S J, Dorfman D. Hemophilic arthropathy.  Radiol Clin North Am. 1996;  34 446-450
  • 5 Morris C J, Blake D R, Wainwright A C, Steven M M. Relationship between iron deposits and tissue damage in the synovium: an ultrastructural study.  Ann Rheum Dis. 1986;  45 21-26
  • 6 Manco-Johnson M J. Family issues in continuous infusion therapy with factor VIII.  Blood Coagul Fibrinolysis. 1996;  7(suppl 1) S21-S25
  • 7 Hacker M R, Geraghty S, Manco-Johnson M. Barriers to compliance with prophylaxis therapy in haemophilia.  Haemophilia. 2001;  7 392-396
  • 8 Wen F Q, Jabbar A A, Chen Y X et al.. c-myc proto-oncogene expression in hemophilic synovitis: in vitro studies of the effects of iron and ceramide.  Blood. 2002;  100 912-916
  • 9 Obeid L M, Linardic C M, Karolak L A, Hannun Y A. Programmed cell death induced by ceramide.  Science. 1993;  259 1769-1771
  • 10 Bi L, Lawler A M, Antonarakis S E et al.. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A.  Nat Genet. 1995;  10 119-121
  • 11 Bi L, Sarkar R, Naas T et al.. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies.  Blood. 1996;  88 3446-3450
  • 12 Hakobyan N, Kazarian T, Jabbar A A, Jabbar K J, Valentino L A. Pathobiology of hemophilic synovitis I: overexpression of mdm2 oncogene.  Blood. 2004;  104 2060-2064
  • 13 Wu K J, Polack A, Dalla-Favera R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC.  Science. 1999;  283 676-679
  • 14 van Dieijen G, van Rijn J L, Govers-Riemslag J W, Hemker H C, Rosing J. Assembly of the intrinsic factor X activating complex-interactions between factor IXa, factor VIIIa and phospholipid.  Thromb Haemost. 1985;  53 396-400
  • 15 Rawala-Sheikh R, Ahmad S S, Ashby B, Walsh P N. Kinetics of coagulation factor X activation by platelet-bound factor IXa.  Biochemistry. 1990;  29 2606-2611
  • 16 Kerschbaumer R J, Riedrich K, Kral M et al.. An antibody specific for coagulation factor IX enhances the activity of the intrinsic factor X-activating complex.  J Biol Chem. 2004;  279 40445-40450
  • 17 Couto L B. Preclinical gene therapy studies for hemophilia using adeno-associated virus (AAV) vectors.  Semin Thromb Hemost. 2004;  30 161-171
  • 18 Gordon F H, Mistry P K, Sabin C A, Lee C A. Outcome of orthotopic liver transplantation in patients with haemophilia.  Gut. 1998;  42 744-749
  • 19 Schatz S, Turecek P L, Fiedler C et al.. Evaluation of the haemostatic potential of factor VIII-heparin cofactor II hybrid proteins in a mouse model.  Br J Haematol. 2003;  123 692-695
  • 20 Hrachovinova I, Cambien B, Hafezi-Moghadam A et al.. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A.  Nat Med. 2003;  9 1020-1025
  • 21 Furie B, Furie B C. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation.  Trends Mol Med. 2004;  10 171-178
  • 22 Rodriguez-Merchan E C, Magallon M, Galindo E, Lopez-Cabarcos C. Hemophilic synovitis of the knee and the elbow.  Clin Orthop Relat Res. 1997;  343 47-53

Leonard A ValentinoM.D. 

RUSH University Medical Center

1653 West Congress Parkway, Chicago, IL 60612-3833

eMail: lvalentino@rush.edu

    >