References and Notes
<A NAME="RG13806ST-1A">1a</A>
Narimatsu S.
Arai T.
Watanabe T.
Masubuchi Y.
Horie T.
Suzuki T.
Ishikawa T.
Tsutsui M.
Kumagai Y.
Cho AK.
Chem. Res. Toxicol.
1997,
10:
289
<A NAME="RG13806ST-1B">1b</A>
Bair KW.
Tuttle RL.
Knick VC.
Cory M.
McKee DD.
J. Med. Chem.
1990,
33:
2385
<A NAME="RG13806ST-1C">1c</A>
Bair KW.
Andrews CW.
Tuttle RL.
Knick VC.
Cory M.
McKee DD.
J. Med. Chem.
1991,
34:
1983
<A NAME="RG13806ST-2">2</A>
Elliott AJ. In
Chemistry of Organic Fluorine Compounds II: A Critical Review
Hudlicky M.
Pavlath AE.
ACS Monograph 187, American Chemical Society;
Washington DC:
1995.
p.1119-1125
<A NAME="RG13806ST-3A">3a</A>
Qiu XL.
Meng WD.
Qing FL.
Tetrahedron
2004,
60:
6711
<A NAME="RG13806ST-3B">3b</A>
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
<A NAME="RG13806ST-3C">3c</A>
Kollonitsch J. In
Biomedicinal Aspects of Fluorine Chemistry
Filler R.
Kobayashi Y.
Elsevier;
Amsterdam:
1993.
<A NAME="RG13806ST-4A">4a</A>
Nagabhushan TL. inventors; US 4235892.
; Chem. Abstr. 1980, 94, 139433
<A NAME="RG13806ST-4B">4b</A>
Wu G.
Schumacher DP.
Tormos W.
Clark JE.
Murphy BL.
J. Org. Chem.
1997,
62:
2996
<A NAME="RG13806ST-4C">4c</A>
Stanek J.
Frei J.
Mett H.
Schneider P.
Regenass U.
J. Med. Chem.
1992,
35:
1339
<A NAME="RG13806ST-4D">4d</A>
Hennequin LFA,
Gibson KH, and
Foote KM. inventors; PCT Int. Appl. WO 2003047582 A1.
; Chem. Abstr. 2003, 139, 36516
<A NAME="RG13806ST-5A">5a</A>
Bravo P.
Resnati G.
Zappala C.
J. Fluorine Chem.
1992,
59:
153
<A NAME="RG13806ST-5B">5b</A>
Okada T.
Tsuji T.
Tsushima T.
Yoshida T.
Matsuura S.
J. Heterocycl. Chem.
1991,
28:
1061
<A NAME="RG13806ST-5C">5c</A>
Foster AB.
Jarman M.
Kinas RW.
Van Maanen JMS.
Taylor GN.
Gaston JL.
Parkin A.
Richardson AC.
J. Med. Chem.
1981,
24:
1399
<A NAME="RG13806ST-6A">6a</A>
De Kimpe N.
Jolie R.
De Smaele D.
J. Chem. Soc., Chem. Commun.
1994,
1221
<A NAME="RG13806ST-6B">6b</A>
De Kimpe N.
De Smaele D.
Szakonyi Z.
J. Org. Chem.
1997,
62:
2448
<A NAME="RG13806ST-6C">6c</A>
Abbaspour Tehrani K.
Van Nguyen T.
Karikomi M.
Rottiers M.
De Kimpe N.
Tetrahedron
2002,
58:
7145
<A NAME="RG13806ST-6D">6d</A>
D’hooghe M.
Waterinckx A.
De Kimpe N.
J. Org. Chem.
2005,
70:
227
<A NAME="RG13806ST-6E">6e</A>
D’hooghe M.
Rottiers M.
Jolie R.
De Kimpe N.
Synlett
2005,
931
<A NAME="RG13806ST-7">7</A>
As a representative example, the synthesis of 1-(3-methyl-benzyl)aziridin-2-ylmethyl
2-methylpropanoate 4a is described. To a solution of isobutyric acid (0.88 g, 1.0 equiv) in DMSO (15 mL)
was added K2CO3 (2.76 g, 2 equiv), and the resulting suspension was stirred for 30 min at r.t. Subsequently,
2-(bromomethyl)-1-(3-methylbenzyl)-aziridine (3a, 2.40 g, 0.01 mol) was added, and the mixture was heated at 80 °C for 15 h. The reaction
mixture was poured into H2O (20 mL) and extracted with Et2O (3 × 15 mL). The combined organic extracts were washed with H2O (2 × 15 mL) and brine (20 mL). Drying (MgSO4), filtration of the drying agent and evaporation of the solvent afforded 1-(3-methylbenzyl)aziridin-2-ylmethyl
2-methylpropanoate (4a), which was purified by filtration through silica gel (hexane-EtOAc, 5:3).
1-(3-Methylbenzyl)aziridin-2-ylmethyl 2-methylpropanoate (4a): R
f
= 0.25; light-yellow oil; yield 85%. 1H NMR (300 MHz, CDCl3): δ = 1.10 and 1.11 [6 H, 2 d, J = 6.9 Hz, (CH
3)2CH], 1.51 [1 H, d, J = 6.3 Hz, (H
cisCH)N], 1.77 [1 H, d, J = 3.3 Hz, (HCH
trans)N], 1.82-1.89 (1 H, m, NCH), 2.34 (3 H, s, CH3Ar), 2.47 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 3.30 and 3.53 [2 H, 2 d, J = 13.3 Hz, N(HCH)Ar], 3.81 and 4.20 [2 H, 2 × dd, J = 11.6, 7.4, 4.5 Hz, (HCH)O], 7.06-7.24 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 18.89 [(CH3)2CH], 21.39 (CH3Ar), 31.76 [(HcisCHtrans)N], 33.86 [(CH3)2
CH], 37.21 (CHN), 64.40 (NCH2Ar), 66.55 (CH2O), 125.14, 127.87, 128.27 and 128.85 (HCarom), 137.93 and 138.73 (2 × Carom,quat), 176.99 (CO). IR (NaCl): 1733 cm-1 (C=O). MS (70 eV): m/z (%) = 247 (19) [M+], 160 (38), 158 (17), 105 (100), 72 (21), 71 (38). Anal. Calcd for C15H21NO2: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.97; H, 8.74; N, 5.50.
<A NAME="RG13806ST-8A">8a</A>
Davoli P.
Forni A.
Moretti I.
Prati F.
Torre G.
Tetrahedron
2001,
57:
1801
<A NAME="RG13806ST-8B">8b</A>
Davoli P.
Caselli E.
Bucciarelli M.
Forni A.
Torre G.
Prati F.
J. Chem. Soc., Perkin Trans. 1
2002,
1948
<A NAME="RG13806ST-8C">8c</A>
Risberg E.
Fischer A.
Somfai P.
Tetrahedron
2005,
61:
8443
<A NAME="RG13806ST-8D">8d</A>
Bilke JL.
Dzuganova M.
Fröhlich R.
Würthwein E.-U.
Org. Lett.
2005,
7:
3267
<A NAME="RG13806ST-9A">9a</A>
Chang J.-W.
Bae JH.
Shin S.-H.
Park CS.
Choi D.
Lee WK.
Tetrahedron Lett.
1998,
39:
9193
<A NAME="RG13806ST-9B">9b</A>
Sugiyama S.
Inoue T.
Ishii K.
Tetrahedron: Asymmetry
2003,
14:
2153
<A NAME="RG13806ST-10A">10a</A>
D’hooghe M.
Van Brabandt W.
De Kimpe N.
J. Org. Chem.
2004,
69:
2703
<A NAME="RG13806ST-10B">10b</A>
D’hooghe M.
Waterinckx A.
Vanlangendonck T.
De Kimpe N.
Tetrahedron
2006,
62:
2295
<A NAME="RG13806ST-10C">10c</A>
D’hooghe M.
Van Speybroeck V.
Waroquier M.
De Kimpe N.
Chem. Commun.
2006,
1554
<A NAME="RG13806ST-11">11</A>
As a representative example, the synthesis of 3-[allyl-(3-methylbenzyl)amino]-2-bromopropyl
2-methylpropanoate (6a) is described. To a solution of 1-(3-methylbenzyl)-aziridin-2-ylmethyl 2-methylpropanoate
(4a, 2.47 g, 10 mmol) in MeCN (50 mL) was added allyl bromide (1.45 g, 1.2 equiv) under
stirring, and the resulting mixture was heated for 6 h under reflux. Evaporation of
the solvent afforded 3-[allyl(3-methylbenzyl)amino]-2-bromopropyl 2-methylpropanoate
(6a), which was purified by means of column chromatography (hexane-EtOAc, 49:1) on silica
gel in order to obtain an analytically pure sample.
3-[Allyl(3-methylbenzyl)amino]-2-bromopropyl 2-methyl-propanoate (6a): colorless liquid; yield 90%; R
f
= 0.04 (hexane-EtOAc, 49:1). 1H NMR (300 MHz, CDCl3): δ = 1.17 [6 H, d, J = 7.2 Hz, (CH
3)2CH], 2.34 (3 H, s, CH3Ar), 2.54 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 2.84 and 2.93 [2 H, 2 × dd, J = 13.7, 8.8, 5.9 Hz, N(HCH)CHBr], 3.06 and 3.17 [2 H, 2 × dd, J = 14.0, 6.9, 6.1 Hz, N(HCH)CH=CH2], 3.53 and 3.67 [2 H, 2 d, J = 13.5 Hz, N(HCH)Ar], 4.07-4.16 (1 H, m, CHBr), 4.27 and 4.50 [2 H, 2 × dd, J = 11.9, 6.3, 3.7 Hz, (HCH)O], 5.15-5.22 (2 H, m, CH=CH
2), 5.79-5.92 (1 H, m, CH=CH2), 7.05-7.26 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 18.87 and 18.96 [(CH3)2CH], 21.41 (CH3Ar), 33.94 [(CH3)2
CH], 48.77 (CHBr), 57.50, 57.67 and 59.12 (3 × CH2N), 65.70 (CH2O), 118.07 (CH=CH2), 125.93, 127.95, 128.25 and 129.61 (HCarom), 135.23 (CH=CH2), 137.90 and 138.70 (2 × Carom,quat), 176.48 (CO). IR (NaCl): 1736 cm-1 (C=O). MS (70 eV): m/z (%) = 368, 370 (23) [M+ + 1], 288 (100) [M+ - Br]. Anal. Calcd for C18H26BrNO2: C, 58.70; H, 7.12; N, 3.80. Found: C, 58.91; H, 7.31; N, 3.66.
<A NAME="RG13806ST-12">12</A>
As a representative example, the synthesis of 2-[allyl(3-methylbenzyl)amino]-3-fluoropropyl
2-methylpropanoate (7a) and 3-[allyl(3-methylbenzyl)amino]-2-fluoropropyl 2-methylpropanoate (8a) is described. To a solution of 3-[allyl(3-methylbenzyl)amino]-2-bromopropyl 2-methyl-propanoate
(6a, 3.68 g, 10 mmol) in MeCN (50 mL) was added TBAF·3H2O (4.73 g, 1.5 equiv) under stirring and the resulting mixture was heated for 7 h
under reflux. Extraction with H2O (40 mL) and Et2O (3 × 30 mL), drying (MgSO4), filtration of the drying agent and evaporation of the solvent afforded a mixture
of 2-[allyl(3-methylbenzyl)amino]-3-fluoropropyl 2-methylpropanoate (7a, 72%) and 3-[allyl(3-methylbenzyl)amino]-2-fluoropropyl 2-methylpropanoate (8a, 28%). Both isomers were separated by means of column chromatography (hexane-ethyl
acetate, 34:1) in order to obtain analytically pure samples.
2-[Allyl(3-methylbenzyl)amino]-3-fluoropropyl 2-methyl-propanoate (7a): colorless liquid; R
f
= 0.16 (hexane-EtOAc, 34:1). 1H NMR (300 MHz, CDCl3): δ = 1.18 and 1.19 [6 H, 2 d, J = 6.9 Hz, (CH
3)2CH], 2.34 (3 H, s, CH3Ar), 2.57 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 3.20-3.35 (3 H, m, CHN and NCH
2CH=CH2), 3.73 and 3.76 [2 H, 2 d, J = 14.3 Hz, N(HCH)Ar], 4.20 [1 H, dd, J = 11.4, 6.5 Hz, (HCH)O], 4.30 [1 H, ddd, J = 11.4, 6.5, 1.2 Hz, (HCH)O], 4.50 and 4.66 [2 H, dd, J = 47.5, 5.1 Hz, (HCH)F], 5.09-5.24 (2 H, m, CH=CH
2), 5.73-5.86 (1 H, m, CH=CH2), 7.04-7.32 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 19.06 [(CH3)2CH], 21.52 (CH3Ar), 34.12 [(CH3)2
CH], 54.06 and 54.81 (2 × CH2N), 56.85 (d, J = 18.5 Hz, CHN), 61.55 (d, J = 5.8 Hz, CH2O), 82.34 (d, J = 171.9 Hz, CH2F), 117.28 (CH=CH2), 125.57, 127.82, 128.26 and 129.22 (HCarom), 136.84 (CH=CH2), 137.94 and 139.87 (2 × Carom,quat), 176.92 (CO). 19F (CCl3F): δ = -227.42 (td, J = 46.0, 22.4 Hz, CH2F). IR (NaCl): 1738 cm-1 (C=O). MS (70 eV): m/z
(%) = 307 (1) [M+], 274 (5) [M+ - CH2F], 206 (45), 174 (40), 105 (100). Anal. Calcd for C18H26FNO2: C, 70.33; H, 8.53; N, 4.56. Found: C, 70.50; H, 8.70; N, 4.41.
3-[Allyl(3-methylbenzyl)amino]-2-fluoropropyl 2-methyl-propanoate (8a): colorless liquid; R
f
= 0.09 (hexane-EtOAc, 34:1). 1H NMR (300 MHz, CDCl3): δ = 1.16 [6 H, d, J = 7.2 Hz, (CH
3)2CH], 2.34 (3 H, s, CH3Ar), 2.55 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 2.74 (2 H, dd, J = 19.8, 5.5 Hz, NCH
2CHF), 3.15 (2 H, d, J = 6.3 Hz, NCH
2CH=CH2), 3.62 (2 H, s, NCH2Ar), 4.11-4.34 (2 H, m, CH2O), 4.76 (1 H, dddd, J = 48.8, 11.7, 5.8, 3.0 Hz, CHF), 5.14-5.23 (2 H, m, CH=CH
2), 5.85-5.93 (1 H, m, CH=CH2), 7.04-7.25 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 18.92 [(CH3)2CH], 21.42 (CH3Ar), 33.88 [(CH3)2
CH], 53.39 (d, J = 23.1 Hz, NCH2CHF), 57.82 (NCH2CH=CH2), 59.13 (NCH2Ar), 64.42 (d, J = 21.9 Hz, CH2O), 90.33 (d, J = 173.1 Hz, CHF), 117.96 (CH=CH2), 125.95, 127.89, 128.22 and 129.61 (HCarom), 135.43 (CH=CH2), 137.90 and 138.83 (2 × Carom,quat), 176.80 (CO). 19F (CCl3F): δ = -189.50 to
-189.34 (m, CHF). IR (NaCl): 1736 cm-1 (C=O). MS
(70 eV): m/z (%) = 307 (3) [M+], 174 (99), 105 (100). Anal. Calcd for C18H26FNO2: C, 70.33; H, 8.53; N, 4.56. Found: C, 70.54; H, 8.72; N, 4.32.
<A NAME="RG13806ST-13A">13a</A>
Pierre JL.
Baret P.
Rivoirard EM.
J. Heterocycl. Chem.
1978,
15:
817
<A NAME="RG13806ST-13B">13b</A>
Bassindale AR.
Kyle PA.
Soobramanien MC.
Taylor PG.
J. Chem. Soc., Perkin Trans. 1
2000,
439
<A NAME="RG13806ST-13C">13c</A>
Weber K.
Kuklinski S.
Gmeiner P.
Org. Lett.
2000,
2:
647
<A NAME="RG13806ST-13D">13d</A>
Sim TB.
Kang SH.
Lee KS.
Lee WK.
Yun H.
Dong Y.
Ha H.-J.
J. Org. Chem.
2003,
68:
104
<A NAME="RG13806ST-13E">13e</A>
Gnecco D.
Orea FL.
Galindo A.
Enríquez RG.
Toscano RA.
Reynolds WF.
Molecules
2000,
5:
998
<A NAME="RG13806ST-13F">13f</A>
Crousse B.
Narizuka S.
Bonnet-Delpon D.
Begué J.-P.
Synlett
2001,
679
<A NAME="RG13806ST-13G">13g</A>
Testa L.
Akssira M.
Zaballos-García E.
Arroyo P.
Domingo LR.
Sepúlveda-Arques J.
Tetrahedron
2003,
59:
677
<A NAME="RG13806ST-13H">13h</A>
O’Brien P.
Towers TD.
J. Org. Chem.
2002,
67:
304
<A NAME="RG13806ST-13I">13i</A>
Katagiri T.
Takahashi M.
Fujiwara Y.
Ihara H.
Uneyama K.
J. Org. Chem.
1999,
64:
7323
<A NAME="RG13806ST-14A">14a</A>
Wade TN.
J. Org. Chem.
1980,
45:
5328
<A NAME="RG13806ST-14B">14b</A>
Alvernhe GM.
Ennakoua CM.
Lacombe SM.
Laurent AJ.
J. Org. Chem.
1981,
46:
4938
<A NAME="RG13806ST-14C">14c</A>
Alvernhe GM.
Lacombe S.
Laurent A.
Tetrahedron Lett.
1980,
21:
289