Subscribe to RSS
DOI: 10.1055/s-2006-947828
© Georg Thieme Verlag KG Stuttgart · New York
Entstehung und Bedeutung von numerischen Chromosomenveränderungen bei bösartigen Tumorerkrankungen
Origin and role of aneuploidy in cancerPublication History
Publication Date:
26 July 2006 (online)

Zusammenfassung
Genetische Veränderungen von Tumorzellen haben eine große Bedeutung für die Prognose vieler bösartiger Erkrankungen. Das Verständnis ihrer Entstehung bildet zudem die Grundlage für die Entwicklung neuer Therapiemöglichkeiten. Bei einer Vielzahl von Präkanzerosen und malignen Tumoren finden sich numerische Chromosomen-veränderungen (Aneuploidie), d. h. Zellen mit mehr oder weniger als 46 Chromosomen. Noch ist nicht abschließend geklärt, ob Aneuploidie eine kausale Bedeutung bei der Krebsentstehung hat oder ob es sich um ein Begleitphänomen handelt. Es existieren eine Reihe von Mechanismen, die die Entstehung von Aneuploidie erklären können: Diese umfassen Fehler in der Zellteilung, beispielsweise durch Chromosomenfehlverteilung infolge defekter Kontrollmechanismen oder Spindelpolabnormitäten. Zudem kann der Verlust der Telomersequenzen am Ende eines jeden Chromosoms und die defekte Reparatur von DNA-Schäden zur unkontrollierten Fusion von Chromosomen und dadurch zu abweichenden Chromosomensätzen führen. Schließlich kann ein doppelter Chromosomensatz (Tetraploidie) innerhalb nachfolgender Zellteilungen, z. B. durch Chromosomenverlust, die Entstehung aneuploider Chromosomensätze zur Folge haben. Das regelmäßige Vorkommen dieser Defekte in Präkanzerosen und Malignomen legt eine Beteiligung der Aneuploidie an der Entwicklung und dem Fortschreiten des malignen Phänotyps nahe.
Summary
Genetic aberrations of cancer cells have a profound impact for prognosis in several malignant neoplasias. The understanding of their origin is the basis for the development of new therapeutic options. Aneuploidy is observed in a large variety of premalignancies and tumors. Aneuploid cells harbor less or more than 46 chromosomes. The exact role of aneuploidy in tumorigenesis is still not clear. It has long been debated, whether aneuploidy directly contributes to tumorigenesis or reflects nonspecific changes during tumor progression. Several mechanisms are thought to be responsible for the generation of aneuploid sets of chromosomes: these comprise failure in cell division, such as defective chromosome separation caused by compromised mitotic checkpoint signaling or centrosome aberrations. Moreover, telomere shortening and defective DNA-damage signaling appear to be powerful driving forces of genomic instability. The loss of telomere sequences at the end of each chromosome and DNA double-strand breakage accompanied by compromised damage signaling favor fusion of chromosomes and generation of aneuploidy. Furthermore, aneuploidy arises to a much higher degree from a tetraploid state when compared to diploid cells. The frequent observation of the described defects in pre- and malignant cells supports the hypothesis that aneuploidy contributes to tumorigenesis.
Schlüsselwörter
Aneuploidie - Krebserkrankungen
Key words
aneuploidy - cancer
Literatur
- 1
Alani R M, Hasskarl J, Grace M. et al .
Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1.
Proc Natl Acad Sci U S A.
1999;
96
9637-9641
MissingFormLabel
- 2
Albertson D G, Collins C, McCormick F, Gray J W.
Chromosome aberrations in solid tumors.
Nat Genet.
2003;
34
369-376
MissingFormLabel
- 3
Artandi S E, Chang S. et al .
Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers
in mice.
Nature.
2000;
406
641-645
MissingFormLabel
- 4
Baretton G, Vogt T, Valina C. et al .
Prostate cancers and potential precancerous conditions: DNA cytometric investigations
and interphase cytogenetics.
Verh Dtsch Ges Pathol.
1993;
77
86-92
MissingFormLabel
- 5
Bharadwaj R, Yu H.
The spindle checkpoint, aneuploidy, and cancer.
Oncogene.
2004;
23
2016-2027
MissingFormLabel
- 6 Boveri T. Zur Frage der Entstehung Maligner Tumoren. Jena: Fischer 1914
MissingFormLabel
- 7
Cahill D P, Lengauer C, Yu J. et al .
Mutations of mitotic checkpoint genes in human cancers.
Nature.
1998;
392
300-303
MissingFormLabel
- 8
D’Assoro A B, Lingle W L, Salisbury J L.
Centrosome amplification and the development of cancer.
Oncogene.
2002;
21
6146-6153
MissingFormLabel
- 9
Dobles M, Liberal V, Scott M L, Benezra R, Sorger P K.
Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein
Mad2.
Cell.
2000;
101
635-645
MissingFormLabel
- 10
Doxsey S J.
Centrosomes as command centres for cellular control.
Nat Cell Biol.
2001;
3
E105-108
MissingFormLabel
- 11
Duensing A, Duensing S.
Guilt by association? p53 and the development of aneuploidy in cancer.
Biochem Biophys Res Commun.
2005;
331
694-700
MissingFormLabel
- 12
Duensing A, Liu Y, Tseng M. et al .
Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required
for oncogene-induced centrosome overduplication.
Oncogene.
2006;
25
2943-2949
MissingFormLabel
- 13
Duensing S.
A tentative classification of centrosome abnormalities in cancer.
Cell Biol Int.
2005;
29
352-359
MissingFormLabel
- 14
Duensing S, Munger K.
Human papillomaviruses and centrosome duplication errors: modeling the origins of
genomic instability.
Oncogene.
2002;
21
6241-6248
MissingFormLabel
- 15
Duesberg P, Rausch C, Rasnick D, Hehlmann R.
Genetic instability of cancer cells is proportional to their degree of aneuploidy.
Proc Natl Acad Sci U S A.
1998;
95
13692-13697
MissingFormLabel
- 16
Engelhardt M, Drullinsky P et al.
Telomerase and telomere length in the development and progression of premalignant
lesions to colorectal cancer.
Clin Cancer Res.
1997;
3
1931-1941
MissingFormLabel
- 17
Engelhardt M, Kumar R. et al .
Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic
cells.
Blood.
1997;
90
182-193
MissingFormLabel
- 18
Engelhardt M, Mackenzie K, Drullinsky P, Silver R T, Moore M A.
Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex
vivo culture.
Cancer Res.
2000;
60
610-617
MissingFormLabel
- 19
Engelhardt M, Ozkaynak M F, Drullinsky P. et al .
Telomerase activity and telomere length in pediatric patients with malignancies undergoing
chemotherapy.
Leukemia.
1998;
12
13-24
MissingFormLabel
- 20
Fujiwara T, Bandi M, Nitta M. et al .
Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells.
Nature.
2005;
437
1043-1047
MissingFormLabel
- 21
Galipeau P C, Cowan D S, Sanchez C A. et al .
17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy
in Barrett’s esophagus.
Proc Natl Acad Sci USA.
1996;
93
7081-7084
MissingFormLabel
- 22
Gemma A, Hosoya Y, Seike M. et al .
Genomic structure of the human MAD2 gene and mutation analysis in human lung and breast
cancers.
Lung Cancer.
2001;
32
289-295
MissingFormLabel
- 23
Giehl M, Fabarius A, Frank O. et al .
Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease
and chromosomal instability.
Leukemia.
2005;
19
1192-1197
MissingFormLabel
- 24
Hanahan D, Weinberg R A.
The hallmarks of cancer.
Cell.
2000;
100
57-70
MissingFormLabel
- 25
Hanks S, Coleman K, Reid S. et al .
Constitutional aneuploidy and cancer predisposition caused by biallelic mutations
in BUB1B.
Nat Genet.
2004;
36
1159-1161
MissingFormLabel
- 26
Hasskarl J, Duensing S, Manuel E, Munger K.
The helix-loop-helix protein ID1 localizes to centrosomes and rapidly induces abnormal
centrosome numbers.
Oncogene.
2004;
23
1930-1938
MissingFormLabel
- 27
Hempen P M, Kurpad H, Calhoun E S et al.
A double missense variation of the BUB1 gene and a defective mitotic spindle checkpoint
in the pancreatic cancer cell line Hs766T.
Hum Mutat.
2003;
21
445
MissingFormLabel
- 28
Jaffrey R G, Pritchard S C, Clark C. et al .
Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell
lung cancer.
Cancer Res.
2000;
60
4349-4352
MissingFormLabel
- 29
Kalitsis P, Earle E, Fowler K J, Choo K H.
Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function
during early embryogenesis.
Genes Dev.
2000;
14
2277-2282
MissingFormLabel
- 30
Kinzler K W, Vogelstein B.
Lessons from hereditary colorectal cancer.
Cell.
1996;
87
159-170
MissingFormLabel
- 31
Kops G J, Weaver B A, Cleveland D W.
On the road to cancer: aneuploidy and the mitotic checkpoint.
Nat Rev Cancer.
2005;
5
773-785
MissingFormLabel
- 32
Lengauer C, Kinzler K W, Vogelstein B.
Genetic instability in colorectal cancers.
Nature.
1997;
386
623-627
MissingFormLabel
- 33
Nigg E A.
Centrosome aberrations: cause or consequence of cancer progression?.
Nat Rev Cancer.
2002;
2
815-825
MissingFormLabel
- 34
O’Driscoll M, Jeggo P A.
The role of double-strand break repair - insights from human genetics.
Nat Rev Genet.
2006;
7
45-54
MissingFormLabel
- 35
Ohshima K, Haraoka S. et al .
Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite
instability in adult T-cell leukemia/lymphoma.
Cancer Lett.
2000;
158
141-150
MissingFormLabel
- 36
Olaharski A J, Sotelo R, Solorza-Luna G. et al .
Tetraploidy and chromosomal instability are early events during cervical carcinogenesis.
Carcinogenesis.
2006;
27
337-343
MissingFormLabel
- 37
Persons D L, Croughan W S. et al .
Interphase cytogenetics of esophageal adenocarcinoma and precursor lesions.
Cancer Genet Cytogenet.
1998;
106
11-17
MissingFormLabel
- 38
Pihan G, Doxsey S J.
Mutations and aneuploidy: co-conspirators in cancer?.
Cancer Cell.
2003;
4
89-94
MissingFormLabel
- 39
Rajagopalan H, Lengauer C.
Aneuploidy and cancer.
Nature.
2004;
432
338-341
MissingFormLabel
- 40
Ru H Y, Chen R L, Lu W C, Chen J H.
hBUB1 defects in leukemia and lymphoma cells.
Oncogene.
2002;
21
4673-4679
MissingFormLabel
- 41
Rubin E M, DeRose P B, Cohen C.
Comparative image cytometric DNA ploidy of liver cell dysplasia and hepatocellular
carcinoma.
Mod Pathol.
1994;
7
677-680
MissingFormLabel
- 42
Shi Q, King R W.
Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell
lines.
Nature.
2005;
437
1038-1042
MissingFormLabel
- 43
Shichiri M, Yoshinaga K, Hisatomi H et al.
Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and
their relationship to survival.
Cancer Res.
2002;
62
13-17
MissingFormLabel
- 44
Shiloh Y.
ATM and related protein kinases: safeguarding genome integrity.
Nat Rev Cancer.
2003;
3
155-168
MissingFormLabel
- 45
Storchova Z, Pellman D.
From polyploidy to aneuploidy, genome instability and cancer.
Nat Rev Mol Cell Biol.
2004;
5
45-54
MissingFormLabel
- 46
Takahashi T, Haruki N, Nomoto S. et al .
Identification of frequent impairment of the mitotic checkpoint and molecular analysis
of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers.
Oncogene.
1999;
18
4295-300
MissingFormLabel
- 47
Wäsch R, Cross F R.
APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit.
Nature.
2002;
418
556-562
MissingFormLabel
- 48
Wäsch R, Engelbert D.
Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic
instability of cancer cells.
Oncogene.
2005;
24
1-10
MissingFormLabel
- 49
Zhou H, Kuang J. et al .
Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and
transformation.
Nat Genet.
1998;
20
189-193
MissingFormLabel
Priv.-Doz. Dr. med. Ralph Wäsch
Abteilung Innere Medizin I, Schwerpunkt Hämatologie und Onkologie, Medizinische Universitätsklinik
Hugstetterstraße 55
79106 Freiburg, Germany
Phone: 0761/2707205
Fax: 0761/2703318
Email: ralph.waesch@uniklinik-freiburg.de