Semin Thromb Hemost 2006; 32(5): 514-521
DOI: 10.1055/s-2006-947866
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Laboratory Testing for von Willebrand Disease: Contribution of Multimer Analysis to Diagnosis and Classification

Ulrich Budde1 , Antje Pieconka1 , Kirsten Will1 , Reinhard Schneppenheim2
  • 1Coagulation Laboratory, Laboratory Association Professor Arndt and Partners, Hamburg, Germany
  • 2Department of Hematology, Childrens Hospital, University Clinic, Hamburg, Germany
Further Information

Publication History

Publication Date:
24 July 2006 (online)

ABSTRACT

The stepwise diagnosis of von Willebrand disease (vWD) includes patient and family history, screening procedures (bleeding time, filter tests, platelet counts, activated partial thromboplastin time [aPTT]), confirmatory tests (von Willebrand factor [vWF]:antigen [Ag], vWF:ristocetin cofactor activity assay [RCo], vWF:collagen-binding test [CB], ristocetin-induced platelet agglutination [RIPA], and factor [F] VIII:coagulant activity [C]) and tests for final classification (multimeric analysis, vWF:factor VIII binding, and platelet vWF). Accumulating knowledge of the different clinical phenotypes and the pathophysiological basis of the disease have been translated into a classification that differentiates between quantitative and qualitative defects by means of quantitative and functional parameters and by analyzing the electrophoretic pattern of vWF multimers, but without inclusion of the genotype. Recently, it has been shown that with a sensitive method of multimer analysis, a > 90% genotype-phenotype relation may be achieved in the near future.

REFERENCES

  • 1 Ruggeri Z M. Structure and function of von Willebrand factor.  Thromb Haemost. 1999;  82 576-584
  • 2 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.  Blood. 1996;  87 4223-4234
  • 3 Mancuso D J, Tuley E A, Westfield L A et al.. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction.  Biochemistry. 1991;  30 253-269
  • 4 Dent J A, Galbusera M, Ruggeri Z M. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit.  J Clin Invest. 1991;  88 774-782
  • 5 Siedlecki C A, Lestini B J, Kottke-Marchant K et al.. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor.  Blood. 1996;  88 2939-2950
  • 6 Xie L, Chesterman C N, Hogg P. Control of von Willebrand factor multimer size by thrombospondin-1.  J Exp Med. 2001;  193 1341-1349
  • 7 Dent J A, Berkowitz S D, Ware J et al.. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor.  Proc Natl Acad Sci USA. 1990;  87 6306-6310
  • 8 Ruggeri Z M, Zimmerman T S. Variant von Willebrand's disease. Characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets.  J Clin Invest. 1980;  65 1318-1325
  • 9 Hoyer L W, Shainoff J R. Factor VIII-related protein circulates in normal human plasma as high molecular weight multimers.  Blood. 1980;  55 1056-1059
  • 10 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 11 Aihara M, Sawada Y, Ueno K et al.. Visualization of von Willebrand factor multimers by immunoenzymatic stain using avidin-biotin peroxidase complex.  Thromb Haemost. 1986;  55 263-267
  • 12 Bukh A, Ingerslev J, Stenbjerg S. Hundahl, Möller NP. The multimeric structure of plasma F VIII:RAg studied by electroelution and immunoperoxidase detection.  Thromb Res. 1986;  43 579-584
  • 13 Mazurier C, Samor B, Goudemand M. Improved characterization of plasma von Willebrand factor heterogeneity when using 2,5% agarose gel electrophoresis.  Thromb Haemost. 1986;  55 61-69
  • 14 Budde U, Schneppenheim R, Plendl H et al.. Luminographic detection of von Willebrand factor multimers in agarose gels and on nitrocellulose membranes.  Thromb Haemost. 1990;  63 312-315
  • 15 Enayat M S. Multimeric analysis of von Willebrand Factor. In: Hemostasis and Thrombosis Protocols. Vol. 31. Methods in Molecular Medicine (series) CITY:STATE or COUNTRY; PUBLISHER 1999: 187-200
  • 16 Baillod P, Affolter B, Kurt G H, Pflugshaupt R. Multimeric analysis of von Willebrand factor by vertical sodium dodecyl sulphate agarose gel electrophoresis, vacuum blotting technology and sensitive visualization by alkaline phosphatase anti-alkaline phosphatase complex.  Thromb Res. 1992;  66 745-755
  • 17 Krizek D R, Rick M E. A rapid method to visualize von Willebrand factor multimers by using Agarose gel electrophoresis, immunolocalization and luminographic detection.  Thromb Res. 2000;  97 457-463
  • 18 Smejkal G B, Shainoff J R, Kottke-Marchant K M. Rapid high-resolution electrophoresis of multimeric von Willebrand factor using a thermopiloted apparatus.  Electrophoresis. 2003;  24 582-587
  • 19 Budde U, Scharf R E, Franke P et al.. Elevated platelet count as a cause of abnormal von Willebrand factor multimer distribution in plasma.  Blood. 1993;  82 749-757
  • 20 Zimmerman T S, Dent J A, Ruggeri Z M, Nannini L H. Subunit composition of plasma von Willebrand factor. Cleavage is present in normal individuals, increased in IIA and IIB von Willebrand disease, but minimal in variants with aberrant structure of individual oligomers (types IIC, IID and IIE).  J Clin Invest. 1986;  77 947-951
  • 21 Budde U, Dent J A, Berkowitz S D, Ruggeri Z M, Zimmerman T S. Subunit composition of plasma von Willebrand factor in patients with the myeloproliferative syndrome.  Blood. 1986;  68 1213-1217
  • 22 Pareti F I, Lattuada A, Bressi C et al.. Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis.  Circulation. 2000;  102 1290-1295
  • 23 Sadler E J. A revised classification of von Willebrand disease.  Thromb Haemost. 1994;  71 520-525
  • 24 Rugggeri Z M. Classification of von Willebrand disease. In: Verstraete M, Vermylen J, Lijnen R, Arnout J Thrombosis and Haemostasis. Leuven, Belgium; Leuven University Press 1987: 419-445
  • 25 Holmberg L, Berntorp E, Donner M, Nilsson I M. von Willebrand's disease characterized by increased ristocetin sensitivity and the presence of all von Willebrand factor multimers in plasma.  Blood. 1986;  68 668-672
  • 26 Mannucci P M, Lombardi R, Castaman G et al.. von Willebrand disease “Vicenza” with larger-than-normal (supranormal) von Willebrand factor multimers.  Blood. 1988;  71 65-70
  • 27 Zieger B, Budde U, Jessat U et al.. New families with von Willebrand disease type 2M (Vicenza).  Thromb Res. 1987;  87 57-64
  • 28 Hilbert L, Jenkins P V, Gaucher C et al.. Type 2M vWD resulting from a lysine deletion within a four lysine residue repeat in the A1 loop of von Willebrand factor.  Thromb Haemost. 2000;  84 188-194
  • 29 Casonato A, Pontara E, Sartorello F et al.. Type 2M von Willebrand disease variant characterized by abnormal multimerization.  J Lab Clin Med. 2001;  137 70-76

Ulrich BuddeM.D. 

Coagulation Laboratory, Laboratory Association Professor Arndt and Partners

Lademannbogen 61-63, D 22339 Hamburg, Germany

Email: budde@labor-arndt-partner.de

    >