References and Notes
See, for example:
<A NAME="RG16506ST-1A">1a</A>
Yokoyama M.
Nomura M.
Togo H.
Seki H.
J. Chem. Soc., Perkin Trans. 1
1996,
2145
<A NAME="RG16506ST-1B">1b</A>
Yokoyama M.
Nomura M.
Tanabe T.
Togo H.
Heteroat. Chem.
1995,
6:
189
<A NAME="RG16506ST-2">2</A>
Zhang X.
Lee I.
Berdis AJ.
Org. Biomol. Chem.
2004,
2:
1703
<A NAME="RG16506ST-3A">3a</A>
Dinh TH.
Bayard M.-J.
Igolen J.
C. R. Seances Acad. Sci., Ser. C
1976,
283:
227
<A NAME="RG16506ST-3B">3b</A>
Girgis NS.
Cottam HB.
Robins RK.
J. Heterocycl. Chem.
1988,
25:
361
<A NAME="RG16506ST-3C">3c</A>
Cornia M.
Casiraghi G.
Zetta L.
J. Org. Chem.
1991,
56:
5466
<A NAME="RG16506ST-4">4</A>
Lai JS.
Kool ET.
J. Am. Chem. Soc.
2004,
126:
3040
<A NAME="RG16506ST-5A">5a</A>
Wagenknecht H.-A.
Stemp EDA.
Barton JK.
J. Am. Chem. Soc.
2000,
122:
1
<A NAME="RG16506ST-5B">5b</A>
Wagenknecht H.-A.
Stemp EDA.
Barton JK.
Biochemistry
2000,
39:
5483
<A NAME="RG16506ST-5C">5c</A>
Mayer-Enthart E.
Kaden P.
Wagenknecht H.-A.
Biochemistry
2005,
44:
11749
<A NAME="RG16506ST-6A">6a</A>
Rajski SR.
Kumar S.
Roberts RJ.
Barton JK.
J. Am. Chem. Soc.
1999,
121:
5615
<A NAME="RG16506ST-6B">6b</A>
Wagenknecht H.-A.
Rajski SR.
Pascaly M.
Stemp EDA.
Barton JK.
J. Am. Chem. Soc.
2001,
123:
4400
<A NAME="RG16506ST-7">7</A>
Pascaly M.
Yoo J.
Barton JK.
J. Am. Chem. Soc.
2002,
124:
9083
<A NAME="RG16506ST-8">8</A> See for ethidium nucleoside, for example:
Amann N.
Wagenknecht H.-A.
Tetrahedron Lett.
2003,
44:
1685
<A NAME="RG16506ST-9A">9a</A>
Huber R.
Amann N.
Wagenknecht H.-A.
J. Org. Chem.
2004,
69:
744
<A NAME="RG16506ST-9B">9b</A>
Amann N.
Huber R.
Wagenknecht H.-A.
Angew. Chem. Int. Ed.
2004,
43:
1845
<A NAME="RG16506ST-10">10</A>
Wagner, C.; Wagenknecht, H.-A. manuscript submitted for publication.
<A NAME="RG16506ST-11">11</A>
Compound 3 was purified by flash chromatography with CH2Cl2:MeOH:Et3N = 100:3:0.1. Spectroscopic data of 3: 1H NMR (300 MHz, DMSO-d
6): δ = 2.99 (m, 6 H, OCH
2, CHOH, CH
2NH), 3.34 (m, 2 H, CH2-indole, masked under residual water in the sample), 3.73 (m, 8 H, OCH
3, NHCH
2CH2-indole), 6.87 (d, 4 H, arom. linker), 6.99 (m, 1 H, arom. indole), 7.08 (m, 1
H, arom. indole), 7.24 (m, 7 H, arom. linker), 7.39 (m, 2 H, arom. linker, 1 H arom.
indole), 7.53 (m, 1 H, arom. indole), 10.95 (br s, 1 H, NH-indole).
13C NMR (75,4 MHz, DMSO-d
6): δ = 45.03 (CH2NH), 55.25 (OCH3), 66.06 (CH2O), 73.47 (CHOH), 111.68, 113.37, 118.43, 118.56, 121.29, 123.20, 124.13, 127.12, 127.92, 128.03,
129.95, 135.78, 135.83, 136.36, 145.13, 149.82, 158.26. HRMS (ESI): m/z calcd: 537.2753 [MH+]; found: 537.2761 [MH+].
<A NAME="RG16506ST-12">12</A>
Interestingly, the trifluoroacetylated derivative of 3 shows two sets of NMR signals (due to cis/trans isomers of the immonium structure): 1H NMR (300 MHz, DMSO-d
6): δ = 2.90 (m, 3 H, OCH
2, CHOH), 3.35 (m, 2 H, NCH
2
linker), 3.64 (m, 2 H, NCH
2CH2-indole), 3.71 (m, 6 H, OCH
3), 4.01 (m, 2 H, NCH2CH
2-indole), 6.85 (m, 4 H, arom. linker), 6.93-7.17 (m, 2 H, arom. indole), 7.22 (m,
7 H, arom. linker), 7.45 (m, 3 H, arom.), 7.55 (d, 1 H, arom. indol), 10.86 (br s,
0.5 H, NH-indole, cis-isomer), 10.91 (br s, 0.5 H, NH-indole, trans-isomer).
<A NAME="RG16506ST-13">13</A> For the extinction coefficients of the oligonucleotides, see:
Puglisi JD.
Tinoco I.
Methods Enzymol.
1989,
180:
304
<A NAME="RG16506ST-14">14</A>
Indole extinction coefficient: ε260 = 4000 M-1cm-1 in MeOH.
<A NAME="RG16506ST-15">15</A>
ESI ms data (negative mode): ssDNA1: m/z calcd: 5157.9 [M - H+]-; found: 1719.6 [M - 3 H+]3-; ssDNA2: m/z calcd: 5139.9 [M - H+]-; found: 1713.6 [M - 3 H+]3-; ssDNA3: m/z calcd: 5189.9 [M - H+]-; found: 1730,3 [M - 3 H+]3-; ssDNA4: m/z calcd: 5009.9 [M - H+]-; found: 1703.7 [M - 3 H+]3-.
A universal base analogue does not discriminate between the four natural DNA bases
as the counterpart in the complementary strand; see for example:
<A NAME="RG16506ST-16A">16a</A>
Loakes D.
Brown DM.
Nucleic Acids Res.
1994,
22:
4039
<A NAME="RG16506ST-16B">16b</A>
Loakes D.
Hill F.
Brown DM.
Salisbury SA.
J. Mol. Biol.
1997,
270:
426