References and Notes
<A NAME="RU05606ST-1">1</A> See, for example:
Wong C.-H.
Whitesides GM.
Enzymes in Synthetic Organic Chemistry, In Tetrahedron Organic Chemistry Series
Vol. 12:
Baldwin JE.
Magnus PD.
Pergamon Press;
Oxford:
1994.
<A NAME="RU05606ST-2A">2a</A>
Sih CJ.
Angew. Chem., Int. Ed. Engl.
1984,
23:
570
<A NAME="RU05606ST-2B">2b</A>
Sih CJ.
Angew. Chem., Int. Ed. Engl.
1989,
28:
695
<A NAME="RU05606ST-2C">2c</A>
Whitesides GM.
Wong C.-H.
Angew. Chem., Int. Ed. Engl.
1985,
24:
617
<A NAME="RU05606ST-2D">2d</A>
Jones JB.
Tetrahedron
1986,
42:
3351
<A NAME="RU05606ST-3">3</A>
Prelog V.
Pure Appl. Chem.
1968,
9:
119
<A NAME="RU05606ST-4A">4a</A>
Brooks DW.
Mazdiyanski H.
Grothaus PG.
J. Org. Chem.
1987,
52:
3223
<A NAME="RU05606ST-4B">4b</A>
Brooks DW.
Grothaus PG.
Irwin WL.
J. Org. Chem.
1982,
47:
2820
<A NAME="RU05606ST-5A">5a</A>
Kitahara T.
Miyake M.
Kido M.
Mori K.
Tetrahedron: Asymmetry
1990,
1:
775
<A NAME="RU05606ST-5B">5b</A>
Mori K.
Fujiwhara M.
Tetrahedron
1988,
44:
343
<A NAME="RU05606ST-5C">5c</A>
Mori K.
Mori H.
Org. Synth.
1990,
68:
56
<A NAME="RU05606ST-5D">5d</A>
Fuhshuku K.
Funa N.
Akeboshi T.
Ohta H.
Hosomi H.
Ohba S.
Sugai T.
J. Org. Chem.
2000,
65:
129
<A NAME="RU05606ST-6A">6a</A>
Iwamoto M.
Kawada H.
Tanaka T.
Nakada M.
Tetrahedron Lett.
2003,
44:
7239
<A NAME="RU05606ST-6B">6b</A>
Watanabe H.
Iwamoto M.
Nakada M.
J. Org. Chem.
2005,
70:
4652
<A NAME="RU05606ST-6C">6c</A>
Wei Z.-L.
Li ZY.
Lin G.-Q.
Tetrahedron: Asymmetry
2001,
12:
229
<A NAME="RU05606ST-6D">6d</A>
Wei Z.-L.
Li Z.-Y.
Lin G.-Q.
Synthesis
2000,
1673
<A NAME="RU05606ST-6E">6e</A>
Inoue T.
Hosomi K.
Araki M.
Nishide K.
Node M.
Tetrahedron: Asymmetry
1995,
6:
31
<A NAME="RU05606ST-7">7</A>
Gramatica P.
Manitto P.
Monti D.
Speranta G.
Tetrahedron
1988,
44:
1299
<A NAME="RU05606ST-8A">8a</A>
Brooks DW.
Grothaus PG.
Irwin WL.
J. Org. Chem.
1982,
47:
2820
<A NAME="RU05606ST-8B">8b</A>
Not only baker’s yeast but also Saccharomyces cerevisiae (brewing yeast), Bacillus thuringiensis afforded excellent results:
<A NAME="RU05606ST-8C">8c</A>
Kosmol H.
Kieslish K.
Vossing R.
Koch HJ.
Petzoldt K.
Gibian H.
Justus Liebigs Ann. Chem.
1967,
701:
198
<A NAME="RU05606ST-8D">8d</A>
Dai WM.
Zhou WS.
Tetrahedron
1985,
41:
4475
<A NAME="RU05606ST-9">9</A>
The stereochemistry of 13b (Scheme
[4]
, Figure
[3]
) and 14b (Scheme
[5]
, Figure
[4]
) was confirmed by X-ray crystallography after deriving to bromonicotinates.
Compound 13b: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 0.98 (s, 3 H), 1.24-1.35 (m, 1 H), 1.39-1.72 (m, 5 H), 1.92-2.00 (m, 1 H),
2.05 (br s, 1 H), 2.15-2.24 (m, 1 H), 2.26-2.37 (m, 3 H), 2.43-2.52 (m, 1 H), 3.67
(s, 3 H), 4.11 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.2, 23.0, 25.3, 27.8, 29.2, 33.4, 33.9, 51.6, 53.2, 77.2, 174.3, 220.8.
Compound 14b: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 0.97, (s, 3 H), 1.44-1.73 (m, 4 H), 2.00-2.07 (m, 1 H), 2.12-2.22 (m, 1 H),
2.27-2.37 (m, 2 H), 2.42-2.53 (m, 2 H), 3.14 (br s, 1 H), 3.69 (s, 3 H), 4.21 (br
dt, J = 4.4, 2.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 18.7, 18.9, 27.2, 29.2, 33.1, 34.0, 51.9, 53.8, 76.8, 175.1, 221.3.
<A NAME="RU05606ST-10">10</A>
In order to obtain high reproducibility in the reaction with 8 mM substrate, newly
opened baker’s yeast must be used. If long-term-stored yeast (longer than ca. 6 months
at 4 °C) is used in the reaction, a reduced de is observed. The repro-duced results
were obtained with baker’s yeast (Sigma, type II, lot. No. 125K0062).
Compound 9a: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.03 (s, 3 H), 1.51-1.64 (m, 2 H), 1.76 (br s, 1 H), 1.84-1.93 (m, 1 H), 2.16-2.31
(m, 4 H), 2.44-2.52 (m, 1 H), 3.72 (s, 3 H), 4.17-4.20 (m, 1 H), 5.83 (td, J = 1.6, 15.7 Hz, 1 H), 6.92 (td, J = 6.8, 15.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.7, 26.8, 27.9, 33.3, 34.9, 51.5, 52.6, 75.8, 121.2, 148.7, 166.9, 219.6.
Compound 9b: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 1.02 (s, 3 H), 1.67-1.76 (m, 3 H), 1.90-1.97 (m, 1 H), 2.18-2.35 (m, 4 H),
2.44-2.53 (m, 1 H), 3.72 (s, 3 H), 4.13 (br dt, J = 3.7, 4.1 Hz, 1 H), 5.86 (td, J = 1.6, 15.7 Hz), 6.99 (td, J = 6.8, 15.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.2, 26.7, 28.2, 28.4, 33.9, 51.4, 52.7, 77.3, 121.0, 149.2, 167.1, 220.0.
<A NAME="RU05606ST-11">11</A>
Chiral HPLC analysis of 9b was performed with a Shimadzu LC-10A Liquid Chromatograph series using a SHISEIDO
Ceramospher Chiral RU-1 (0.46 φ × 250 mm). Two enantiomers of 9b were detected at the retention time of 10.7 and 11.7 min by eluting with MeOH, flow
rate: 0.5 mL/min, at 50 °C. The enantiomer predominantly obtained in the reaction
(entry 1, Table
[1]
) appeared at 11.7 min. Meanwhile, two enantiomers of 9a were detected using Daicel CHIRALCEL OJ-H (0.46 φ × 250 mm) at 43.2 and 47.5 min
by eluting with a mixed solvent of n-hexane and 2-PrOH (9:1), flow rate: 0.5 mL/min, at 25 °C. The predominant enantiomer
in the reaction (entry 2, Table
[1]
) was detected at 47.5 min.
<A NAME="RU05606ST-12">12</A>
Chiral HPLC analyses of 13b and 14b were performed with Daicel CHIRALCEL OD-H (n-hexane-i-PrOH = 96:4).
<A NAME="RU05606ST-13">13</A>
Katoh T.
Mizumoto S.
Fudesaka M.
Takeo M.
Kajimoto T.
Node M.
Tetrahedron: Asymmetry
2006,
in press