References and Notes
<A NAME="RW11906ST-1A">1a</A>
Modern Aldol Reactions
Vol. 1:
Mahrwarld R.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RW11906ST-1B">1b</A>
Modern Aldol Reactions
Vol. 2:
Mahrwarld R.
Wiley-VCH;
Weinheim:
2004.
For recent reviews, see:
<A NAME="RW11906ST-2A">2a</A>
Palomo C.
Oiarbide M.
Garcia JM.
Chem. Soc. Rev.
2004,
33:
65
<A NAME="RW11906ST-2B">2b</A>
Saito S.
Yamamoto H.
Acc. Chem. Res.
2004,
37:
570
<A NAME="RW11906ST-3A">3a</A>
List B.
Lerner RA.
Barbas CF.
J. Am. Chem. Soc.
2000,
122:
2395
<A NAME="RW11906ST-3B">3b</A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
<A NAME="RW11906ST-3C">3c</A>
Notz W.
List B.
J. Am. Chem. Soc.
2000,
122:
7386
For selected examples, see:
<A NAME="RW11906ST-4A">4a</A>
Tang Z.
Jiang F.
Yu LT.
Cui X.
Gong LZ.
Mi AQ.
Jiang YZ.
Wu Y.-D.
J. Am. Chem. Soc.
2003,
125:
5262
<A NAME="RW11906ST-4B">4b</A>
Tang Z.
Yang ZH.
Cun LF.
Gong LZ.
Mi AQ.
Jiang YZ.
Org. Lett.
2004,
6:
2285
<A NAME="RW11906ST-4C">4c</A>
Mase N.
Tanaka F.
Barbas CF.
Angew. Chem. Int. Ed.
2004,
43:
2420
<A NAME="RW11906ST-4D">4d</A>
Torii H.
Nakadai M.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
1983
<A NAME="RW11906ST-4E">4e</A>
Halland N.
Braunton A.
Bachmann S.
Marigo M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
4790
<A NAME="RW11906ST-4F">4f</A>
Berkessel A.
Koch B.
Lex J.
Adv. Synth. Catal.
2004,
346:
1141
<A NAME="RW11906ST-4G">4g</A>
Tang Z.
Yang ZH.
Chen XH.
Cun LF.
Mi AQ.
Jiang YZ.
Gong LZ.
J. Am. Chem. Soc.
2005,
127:
9285
<A NAME="RW11906ST-4H">4h</A>
Krattiger P.
Kovasy R.
Revell JD.
Ivan S.
Wennemers H.
Org. Lett.
2005,
7:
1101
<A NAME="RW11906ST-4I">4i</A>
Chen J.
Lu H.
Li X.
Cheng L.
Wan J.
Xiao W.
Org. Lett.
2005,
7:
4543
<A NAME="RW11906ST-4J">4j</A>
Samanta S.
Liu J.
Dodda R.
Zhao C.
Org. Lett.
2005,
7:
5321
<A NAME="RW11906ST-4K">4k</A>
Wang W.
Li H.
Wang J.
Tetrahedron Lett.
2005,
46:
5077
<A NAME="RW11906ST-4L">4l</A>
Cobb AJA.
Shaw DM.
Longbottom DA.
Gold JB.
Ley SV.
Org. Biomol. Chem.
2005,
3:
84
<A NAME="RW11906ST-4M">4m</A>
Tang Z.
Cun LF.
Cui X.
Mi AQ.
Jiang YZ.
Gong LZ.
Org. Lett.
2006,
8:
1263
<A NAME="RW11906ST-4N">4n</A>
Hayashi Y.
Sumiya T.
Takahashi J.
Gotoh H.
Urushima T.
Shoji M.
Angew. Chem. Int. Ed.
2005,
44:
958
<A NAME="RW11906ST-4O">4o</A>
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
734
<A NAME="RW11906ST-5">5</A>
Cheng C.
Sun J.
Wang C.
Zhang Y.
Wei S.
Jiang F.
Wu Y.-D.
Chem. Commun.
2006,
215
For the currently available highly diastereoselective and enantioselective organocatalysts
for the same reactions, see references 4i, 4n, 4o. See also:
<A NAME="RW11906ST-6A">6a</A>
Cordova A.
Zhou W.
Ibrahem I.
Reyes E.
Engqvist M.
Liao W.
Chem. Commun.
2005,
3586
<A NAME="RW11906ST-6B">6b</A>
Zhou W.
Ibrahem I.
Dziedic P.
Sunden H.
Cordova A.
Chem. Commun.
2005,
4946
<A NAME="RW11906ST-6C">6c</A>
Wu Y.
Chen Y.
Deng D.
Cai J.
Synlett
2005,
1627
<A NAME="RW11906ST-7A">7a</A>
Hayashi Y.
Yamaguchi J.
Hibino K.
Sumiya T.
Urushima T.
Shoji M.
Hashizume D.
Koshino H.
Adv. Synth. Catal.
2004,
346:
1435
<A NAME="RW11906ST-7B">7b</A>
Bellis E.
Kokotos G.
Tetrahedron
2005,
61:
8669
<A NAME="RW11906ST-7C">7c</A>
Casas J.
Engqvist M.
Ibrahem I.
Kaynak B.
Cordova A.
Angew. Chem. Int. Ed.
2005,
44:
1343
<A NAME="RW11906ST-8">8</A>
General Procedure for the Preparation of Catalysts 2-4:
To a solution of Boc-l-Pro-NHNH2 (for 2) or trans-4-(tert-butyldimethylsilyloxy)-Boc-l-Pro-NHNH2 (for 3 and 4; 8.0 mmol) in toluene (20 mL) was added benzaldehyde (935 mg, 8.8 mmol). The reaction
mixture was stirred at r.t. for 24 h, and then concentrated under reduced pressure.
The residue was dissolved in MeOH (80 mL), and 5% Pd/C (0.2 g) was added. After stirring
under hydrogen (1 atm) for 1 h, the reaction mixture was filtered. The filtrate was
concentrated under reduced pressure. The residue was purified through column chromatography
on silica gel (eluent: PE-EtOAc, 3:1) to give N′-benzyl-Boc-l-proline hydrazide or N′-benzyl-trans-4-(tert-butyldimethylsilyloxy)-Boc-l-proline hydrazide.
To a solution of N′-benzyl-Boc-l-proline hydrazide or N′-benzyl-trans-4-(tert-butyldimethylsilyloxy)-Boc-l-proline hydrazide (2.0 mmol) in DMF (20 mL) were added Boc-l-Pro (for 4) or trans-4-hydroxy-Boc-l-Pro (for 2 and 3; 2.4 mmol), N,N-diisopropylethylamine (DIPEA, 700 µL) and HATU (922 mg, 2.4 mmol) at 0 °C. The reaction
mixture was stirred at r.t. for 24 h, and then concentrated under reduced pressure.
The residue was dissolved in EtOAc. The organic phase was then washed with sat. aq
NaHCO3 and brine and dried over anhyd Na2SO4. After removal of solvent under reduced pressure, the residue was purified through
column chromatography on silica gel (eluent: PE-EtOAc, 2:1) to give a white solid,
which was then treated with a mixture of TFA-CH2Cl2 (1:2, 20 mL). After stirring at r.t. for 1 h, the reaction mixture was concentrated
under reduced pressure. The residue was subjected to chromatography on a H+ ion-exchange resin column with NH3·H2O (3.0 M) as eluent to give a crude product, which was further purified through column
chromatography on silica gel (eluent: CH2Cl2 saturated with NH3 gas-MeOH, 10:1) to give the final product.
<A NAME="RW11906ST-9">9</A>
The following are the analytic data of catalyst 4: [α]D
25 -43.2 (c = 0.206, MeOH); mp 59-62 °C. 1H NMR (600 MHz, CD3OD): δ = 1.57-1.72 (m, 4 H), 1.88-1.95 (m, 2 H), 2.66-2.71 (m, 2 H), 2.84-2.86 (dd,
J = 3.90, 11.94 Hz, 1 H), 3.01-3.05 (m, 1 H), 3.71 (q, J = 8.46 Hz, 2 H), 4.21 (s, 1 H), 4.54 (br s, 1 H), 4.75 (br s, 1 H), 7.17-7.25 (m,
5 H). 13C NMR (150 MHz, CD3OD): δ = 25.6, 30.0, 39.4, 46.5, 50.5, 54.7, 57.5, 58.0, 71.8, 127.6, 128.3, 128.8,
135.4, 174.2, 175.6. HRMS (ESI): m/z [M +H]+ calcd for C17H25N4O3: 333.1921; found: 333.1915.
<A NAME="RW11906ST-10">10</A>
Typical Procedure for the Aldol Reaction of Aldehydes with Cyclohexanone:
To a solution of 4 (12.6 mg, 0.04 mmol) in toluene (0.2 mL) were added cyclohexanone (210 µL) and TFA
(3.1 µL, 0.04 mmol). After stirring at 0 °C for 15 min, aldehyde (0.2 mmoL) was introduced.
The reaction was stirred at the same temperature until completion, and was then quenched
with sat. aq solution of NH4Cl. EtOAc was added to dilute the mixture. The organic layer was separated, washed
with brine, dried over anhyd MgSO4 and concentrated under reduced pressure. The residue was purified through column
chromatography on silica gel (eluent: PE-EtOAc, 3:1) to yield the corresponding aldol
products for further analysis.
<A NAME="RW11906ST-11">11</A>
Further investigations, including computational studies, are needed to fully understand
why catalyst 4 is superior to 1. A plausible explanation is that the existence of the trans-4-hydroxyl group in 4, which had no obvious effect on the solubility of the catalyst, favors the catalytic
conformation that led to the major diastereomer and enantiomer.