References and Notes
<A NAME="RG24606ST-1A">1a</A>
Perry NB.
Blunt JW.
Munro MHG.
Sakai R.
J. Org. Chem.
1988,
53:
4127
<A NAME="RG24606ST-1B">1b</A>
Konishi M.
Zercher CK.
Bechkam S.
Haubold E.-M.
J. Am. Chem. Soc.
1990,
112:
3715
<A NAME="RG24606ST-1C">1c</A>
Wender PA.
Zercher CK.
Bechkam S.
Haubold E.-M.
J. Org. Chem.
1993,
58:
5867
<A NAME="RG24606ST-1D">1d</A>
Uchida M.
Chihiro M.
Morita S.
Kanbe T.
Yamashita H.
Yamasakai K.
Yabuuchi Y.
Nakagawa K.
Chem. Pharm. Bull.
1989,
37:
2109
<A NAME="RG24606ST-1E">1e</A>
Carling RW.
Leeson PD.
Mosely AM.
Smith JD.
Saywell K.
Tricklebank MD.
Kemp JA.
Marshal GR.
Foster AC.
Grimwood S.
Bioorg. Med. Chem. Lett.
1993,
3:
65
<A NAME="RG24606ST-1F">1f</A>
Kam T.-S.
Subramaniam G.
Tetrahedron Lett.
2004,
45:
3521
<A NAME="RG24606ST-2A">2a</A>
Weinreb SM. In
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.401
<A NAME="RG24606ST-2B">2b</A>
Bunce RA.
Herron DM.
Johnson LB.
Kotturi S.
J. Org. Chem.
2001,
66:
2822
<A NAME="RG24606ST-2C">2c</A>
Jia X.
Lin H.
Huo C.
Zhang W.
Lu J.
Yang L.
Zhao G.
Liu Z.-L.
Synlett
2003,
1707
<A NAME="RG24606ST-2D">2d</A>
Nagarajan R.
Magesh CJ.
Perumal PT.
Synthesis
2004,
69
<A NAME="RG24606ST-2E">2e</A>
Yadav JS.
Reddy BVS.
Padmavani B.
Synthesis
2004,
405
<A NAME="RG24606ST-2F">2f</A>
Ding K.
Flippen-Anderson J.
Deschamps JR.
Wang S.
Tetrahedron Lett.
2004,
45:
1027
<A NAME="RG24606ST-2G">2g</A>
Fadel F.
Titouani SL.
Soufiaoui M.
Ajamay H.
Mazzah A.
Tetrahedron Lett.
2004,
45:
5905
<A NAME="RG24606ST-2H">2h</A>
Ori M.
Toda N.
Takami K.
Tago K.
Kogen H.
Tetrahedron
2005,
61:
2075
<A NAME="RG24606ST-2I">2i</A>
Zhang W.
Guo Y.
Liu Z.
Jin X.
Yang L.
Liu Z.-L.
Tetrahedron
2005,
61:
1325
<A NAME="RG24606ST-3A">3a</A>
Katritzky AR.
Rachwal S.
Rachwal B.
Tetrahedron
1996,
52:
15031
<A NAME="RG24606ST-3B">3b</A>
Baraznenok IL.
Nenajdenko VG.
Churakov AV.
Nesterenko PN.
Balenkova ES.
Synlett
2000,
514
<A NAME="RG24606ST-3C">3c</A>
De D.
Seth M.
Bhadori AP.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1990,
29:
70
<A NAME="RG24606ST-3D">3d</A>
Lombardo LJ.
Camuso A.
Clark J.
Fager K.
Gullo-Brown J.
Hunt JT.
Inigo I.
Kan D.
Koplowitz B.
Lee F.
McGlinchey K.
Qian L.
Ricca C.
Rovnyak G.
Traeger S.
Tokarski J.
Williams DK.
Wu LI.
Zhao Y.
Manne V.
Bhide RS.
Bioorg. Med. Chem. Lett.
2005,
15:
1895
<A NAME="RG24606ST-3E">3e</A>
Santangelo F.
Casagrande C.
Miragoli G.
Vecchietti V.
Eur. J. Med. Chem.
1994,
29:
877
<A NAME="RG24606ST-3F">3f</A>
Lewis RJ.
Francis ChA.
Lehr RE.
Blank CL.-R.
Tetrahedron
2000,
56:
5345
<A NAME="RG24606ST-4">4</A>
General Procedure for Preparation of 1′,4′-dihydro-2
H
,2′
H
,6
H
-spiro[cyclohexane-1,3′-quinoline]-2,6-diones (4a-i).
A solution of amine 1 (2 mmol) and paraformaldehyde (8 mmol) in EtOH (25 mL) was prepared by gentle warming
(2-3 min). Diketone 3 (2 mmol) was added to this solution in one portion and the mixture was heated under
reflux for 5 min. After cooling to r.t. the colourless precipitate was filtered off,
washed with EtOH (2 × 5 mL) and dried to give 4. The yields reported in Table
[1]
are unoptimised and additional crops of 4 could be obtained upon concentration of the mother liquors.
<A NAME="RG24606ST-5A">5a</A>
Abdel-Magid AF.
Carson KG.
Harris BD.
Maryanoff CA.
Shah RD.
J. Org. Chem.
1996,
61:
3849
<A NAME="RG24606ST-5B">5b</A>
Abdel-Magid AF.
Maryanoff CA.
Carson KG.
Tetrahedron Lett.
1990,
31:
5595
<A NAME="RG24606ST-5C">5c</A>
Salvatore RN.
Yoon ChH.
Jung KW.
Tetrahedron
2001,
57:
7785
<A NAME="RG24606ST-6">6</A>
The N-monosubstituted anilines were prepared by reductive amination of the desired
ketones with the corresponding primary anilines. Sodium triacetoxyborohydride was
used as a reducing agent in the reaction as reported in ref. 5a.
<A NAME="RG24606ST-7">7</A>
All new compounds gave satisfactory 500 MHz 1H NMR and 100 MHz 13C NMR and IR spectral data.
Selected Physical Data.
1′-(1,3-Benzodioxol-5-ylmethyl)-6′-methoxy-1′,4′-dihydro-2
H
,2′
H
,6
H
-spiro[cyclohexane-1,3′-quinoline]-2,6-dione (
4b).
Mp 148 °C. IR (KBr): 3439, 3404, 2931, 2904, 2830, 1726, 1701, 1504, 1489, 1444, 1242,
1151, 1036 cm-1. 1H NMR (CDCl3): δ = 1.82 (m, 1 H), 2.02 (m, 1 H), 2.60-2.75 (m, 4 H), 3.21 (s, 2 H), 3.46 (s,
2 H), 3.75 (s, 3 H), 4.30 (s, 2 H), 5.95 (s, 2 H), 6.55-6.63 (m, 2 H), 6.71-6.80 (m,
4 H). 13C NMR (CDCl3): δ = 19.05, 30.64, 37.86, 55.21, 56.25, 56.33, 67.07, 101.69, 108.37, 109.03, 113.10,
113.72, 115.39, 120.92, 123.33, 132.85, 139.13, 147.41, 148.70, 152.88, 206.33. MS
(70 eV): m/z (%) = 135 (82), 252 (100), 393 (23) [M+], 394 (5) [M + H+]. Anal. Calcd for C23H23NO5: C, 70.21; H, 5.89; N, 3.56. Found: C, 70.21; H, 5.90; N, 3.57.
1′-(3,4-Dimethoxybenzyl)-6′-methoxy-4,4-dimethyl-1′,4′-dihydro-2
H
,2′
H
,6
H
-spiro[cyclohexane-1,3′-quinoline]-2,6-dione (
4g).
Mp 159 °C. IR (KBr): 2963, 2916, 2834, 1722, 1691, 1511, 1459, 1259, 1229, 1201, 1160,
1137, 1053, 1026 cm-1. 1H NMR (CDCl3): δ = 0.88 (s, 3 H), 1.05 (s, 3 H), 2.43 (d, J = 14.0 Hz, 2 H), 2.63 (d, J = 14.0 Hz, 2 H), 3.20 (s, 2 H), 3.41 (s, 2 H), 3.75 (s, 3 H), 3.85 (s, 3 H), 3.89
(s, 3 H), 4.31 (s, 2 H), 6.55-6.63 (m, 2 H), 6.76-6.86 (m, 4 H). 13C NMR (CDCl3): δ = 27.77, 29.99, 30.62, 31.51, 51.65, 55.51, 55.90, 56.24, 56.57, 56.65, 65.89,
66.51, 110.96, 111.83, 112.95, 113.64, 115.37, 119.98, 123.65, 131.53, 139.32, 148.83,
150.04, 152.93, 206.16. MS (70 eV): m/z (%) = 151 (100), 252 (63), 437 (12) [M+], 438 (3) [M + H+]. Anal. Calcd for C26H31NO5: C, 71.37; H, 7.14; N, 3.20. Found: C, 71.37; H, 7.14; N, 3.21.
1′-Cyclododecyl-6′-methoxy-1′,4′-dihydro-2
H
,2′
H
,6
H
-spiro[cyclohexane-1,3′-quinoline]-2,6-dione (
4i).
Mp 186 °C. IR (KBr): 3431, 2937, 2925, 2859, 1717, 1692, 1611, 1580, 1505, 1256, 1239,
1052 cm-1. 1H NMR (CDCl3): δ = 1.30-1.50 (m, 20 H), 1.59-1.70 (m, 2 H), 1.74-1.88 (m, 1 H), 2.06-2.18 (m,
1 H), 2.62-2.67 (m, 2 H), 2.81-2.87 (m, 2 H), 3.15 (s, 2 H), 3.35 (s, 2 H), 3.74 (s,
3 H), 3.88 (t, J = 5.8 Hz, 1 H), 6.68 (br s, 2 H), 6.37 (s, 1 H). 13C NMR (CDCl3): δ = 18.31, 22.47, 22.60, 23.01, 23.77, 23.97, 26.42, 29.65, 37.22, 48.07, 50.91,
55.42, 65.98, 111.58, 112.12, 115.02, 123.10, 138.75, 151.28, 205.74. Anal. Calcd
for C27H39NO3: C, 76.20; H, 9.24; N, 3.29. Found: C, 76.21; H, 9.22; N, 3.28.
1′-(5,5,6-Trimethylbicyclo[2.2.1]hept-2-yl)-6′-methyl-1′,4′-dihydro-2
H
,2′
H
,6
H
-spiro[cyclohexane-1,3′-quinoline]-2,6-dione (
4j).
Mp 156 °C. IR (KBr): 3407, 2964, 2893, 2865, 2833, 1728, 1702, 1619, 1505, 1416, 1265,
1170, 1019, 819, 812 cm-1. 1H NMR (CDCl3): δ = 0.87 (s, 3 H), 0.91 (s, 3 H), 1.03 (d, J = 7.5 Hz, 3 H), 1.31 (dd, J = 1.1, 10.3 Hz, 1 H), 1.49 (dt, J = 3.6, 13.0 Hz, 1 H), 1.70 (d, J = 3.7 Hz, 1 H), 1.75-1.95 (m, 3 H), 2.00 (dq, J = 1.1, 7.4 Hz, 1 H), 2.05-2.13 (m, 1 H), 2.16 (d, J = 2.0 Hz, 1 H), 2.26 (s, 3 H), 2.51 (dt, J = 5.3, 15.5 Hz, 1 H), 2.72 (dt, J = 5.3, 15.5 Hz, 1 H), 2.81-2.97 (m, 2 H), 2.88 (d, J = 11.0 Hz, 1 H), 2.91 (d, J = 13.0 Hz, 1 H), 3.16 (d, J = 13.0 Hz, 1 H), 3.36 (dt, J = 3.9, 9.7 Hz, 1 H), 3.71 (d, J = 11.0 Hz, 1 H), 6.61 (d, J = 8.0 Hz, 1 H), 6.85 (s, 1 H), 6.97 (d, J = 8.0 Hz, 1 H). 13C NMR (CDCl3): δ = 15.81, 17.96, 20.50, 24.72, 26.31, 32.46, 34.84, 35.80, 37.03, 37.40, 37.88,
39.67, 48.17, 49.38, 49.93, 60.55, 71.76, 114.87, 125.63, 127.47, 127.86, 128.07,
146.13, 205.77, 206.23. Anal. Calcd for C25H33NO2: C, 79.11; H, 8.76; N, 3.69. Found: C, 79.10; H, 8.74; N, 3.70.
1′-(2-Adamantyl)-6′-methyl-4,4-dimethyl-1′,4′-dihydro-2
H
,2′
H
,6
H
-spiro[cyclohexane-1,3′-quinoline]-2,6-dione (
4k).
Mp 205 °C. IR (KBr): 3440, 2919, 2900, 2862, 1725, 1695, 1502, 1248, 1155, 819, 519
cm-1. 1H NMR (CDCl3): δ = 0.94 (s, 3 H), 1.07 (s, 3 H), 1.56 (d, J = 12.5 Hz, 2 H), 1.75 (s, 2 H), 1.83-1.96 (m, 6 H), 2.06 (d, J = 12.5 Hz, 2 H), 2.24 (s, 3 H), 2.28 (br s, 2 H), 2.56 (d, J = 14.0 Hz, 2 H), 2.80 (d, J = 14.0 Hz, 2 H), 3.05 (s, 2 H), 3.51 (s, 3 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.88 (s, 1 H), 6.93 (d, J = 8 Hz, 1 H). 13C NMR (CDCl3): δ = 20.45, 27.02, 27.51, 28.02, 29.00, 29.77, 30.65, 32.26, 34.37, 37.57, 37.59,
46.18, 51.21, 60.98, 69.57, 114.64, 125.76, 127.58, 127.84, 128.30, 144.59, 206.01.
Anal. Calcd for C27H35NO2: C, 79.96; H, 8.70; N, 3.45. Found: C, 80.00; H, 8.73; N, 3.42.
For the original work, see:
<A NAME="RG24606ST-8A">8a</A>
Hofmann AW.
Martius CA.
Ber. Dtsch. Chem. Ges.
1871,
4:
742
<A NAME="RG24606ST-8B">8b</A> For mechanistic considerations, see:
Drumm PJ.
O’Connor WF.
Reilly J.
J. Am. Chem. Soc.
1940,
62:
1241
For synthetic applications of the rearrangement, see:
<A NAME="RG24606ST-8C">8c</A>
Martínez R.
Cortés E.
Toscano RA.
Linzaga I.
J. Heterocycl. Chem.
1990,
27:
363
<A NAME="RG24606ST-8D">8d</A>
Martínez R.
Cortés E.
Toscano RA.
Alfaro LJ.
J. Heterocycl. Chem.
1990,
27:
1273
<A NAME="RG24606ST-8E">8e</A>
Martínez R.
Cortés E.
Toscano RA.
Alfaro LJ.
Avila JG.
J. Heterocycl. Chem.
1991,
28:
589
<A NAME="RG24606ST-9">9</A> For chemistry of 2-azaspiro compounds, see:
Alonso ER.
Tehrani KA.
Boelens M.
De Kimpe N.
Synthesis
2005,
1726 ; and literature cited therein