Horm Metab Res 2008; 40(1): 18-23
DOI: 10.1055/s-2007-1004526
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Inhibition of Glucagon-Signaling and Downstream Actions by Interleukin 1β and Tumor Necrosis Factor α in Cultured Primary Rat Hepatocytes

B. Christ 1
  • 1Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee, Göttingen, Germany
Further Information

Publication History

received 22.03.2007

accepted 09.07.2007

Publication Date:
19 December 2007 (online)

Abstract

In cultured rat hepatocytes, glucagon increased the phosphoenolpyruvate carboxykinase (PCK1) mRNA by increasing cellular cAMP concentrations. The proinflammatory cytokines rhIL1β and rhTNFα impaired the increase both in cAMP and PCK1 mRNA. Glucose formation from glycogen stimulated by glucagon was also attenuated by the cytokines, very likely due to the attenuation of the cAMP increase. Treatment of hepatocytes with the phosphodiesterase inhibitor IBMX or the inhibitory G-protein (Gi) inactivating compound pertussis toxin did not abolish the inhibition of the glucagon-stimulated increase in cAMP by the cytokines indicating that phosphodiesterase and Gi were not involved. The activation of adenylate cyclase by forskolin enhanced cAMP and PCK1 mRNA. Again, rhIL1β and rhTNFα attenuated the increase in PCK1 mRNA, however, not that in cAMP. The stimulation of PCK1 mRNA increase with the nonhydrolyzable cAMP analogue CPT-cAMP was inhibited by rhIL1β and rhTNFα indicating interference independent of changes in cAMP levels. It is concluded that rhIL1β and rhTNFα inhibited glucagon-stimulated signal transduction at the site of cAMP formation. In addition, glucagon-stimulated PCK1 mRNA was attenuated independent of cAMP formation very likely on the transcriptional and/or post-transcriptional level.

References

  • 1 Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature.  Am J Med. 1995;  98 75-84
  • 2 Memon RA, Feingold KR, Grunfeld C. The effects of cytokines on intermediary metabolism.  The Endocrinologist. 1994;  4 56-63
  • 3 Christ B, Nath A, Heinrich PC, Jungermann K. Inhibition by recombinant human interleukin-6 of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and of the insulin-dependent induction of glucokinase gene expression in cultured rat hepatocytes: regulation of gene transcription and messenger RNA degradation.  Hepatology. 1994;  20 1577-1583
  • 4 Christ B, Nath A. Impairment by IL1b and TNFa of the glucagon-induced phosphoenolpyruvate carboxykinase gene expression and gluconeogenesis in cultured rat hepatocytes.  Biochem J. 1996;  320 161-166
  • 5 Rippe DF, Berry LJ. Study of inhibition of induction of phosphoenolpyruvate carboxykinase by endotoxin with radial immunodiffusion.  Infect Immunity. 1972;  6 766-772
  • 6 Berry LJ, Smythe DS, Colwell LS. Inhibition of hepatic enzyme induction as a sensitive assay for endotoxin.  J Bacteriol. 1968;  96 1191-1199
  • 7 Hill M, MacCallum R. Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment.  J Clin Invest. 1991;  88 811-816
  • 8 Hill MR, MacCallum RE. Identification of tumor necrosis factor as a transcriptional regulator of the phosphoenolpyruvate carboxykinase gene following endotoxin treatment of mice.  Infect Immunity. 1992;  60 4040-4050
  • 9 Christ B, Nath A, Jungermann K. Mechanism of the impairment of the glucagon-stimulated phosphoenolpyruvate carboxykinase gene expression by IL6: Inhibition of the increase in cAMP and the downstream cAMP action.  Hepatology. 1997;  26 73-80
  • 10 Püschel G, Christ B. Inhibition by PGE2 of glucagon-induced increase in phosphoenolpyruvate carboxykinase mRNA and acceleration of mRNA degradation in cultured rat hepatocytes.  FEBS Lett. 1994;  351 353-356
  • 11 Bartels H, Linnemann H, Jungermann K. Predominant localization of phosphoenolpyruvate carboxykinase mRNA in the periportal zone of rat liver parenchyma demonstrated by in situ hybridization.  FEBS Lett. 1989;  248 188-194
  • 12 Andreone TL, Printz RL, Pilkis SJ, Magnuson MA, Granner DK. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA.  J Biol Chem. 1989;  264 363-369
  • 13 Christ B, Probst I, Jungermann K. Antagonistic regulation of the glucose/glucose-6-phosphate cycle by insulin and glucagon in cultured hepatocytes.  Biochem J. 1986;  238 185-191
  • 14 Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis.  Ann Rev Physiol. 1992;  54 885-909
  • 15 Ross EM, Gilman AG. Biochemical properties of hormone-sensitive adenylate cyclase.  Ann Rev Biochem. 1980;  49 533-564
  • 16 Hanson RW. Metabolism in the era of molecular biology.  J Biol Chem. 2005;  280 1705-1715
  • 17 Quaas M, Stümpel F, Christ B. Glucagon-stimulated but not isoproterenol-stimulated glucose formation inhibition by interleukin-6 in primary cultured rat hepatocytes.  Horm Metab Res. 2005;  37 666-671
  • 18 Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme.  Adv Enzymol Relat Areas Mol Biol. 1994;  69 203-281
  • 19 Deutschman CS, DeMaio A, Clemens MG. Sepsis-induced attenuation of glucagon and 8-BrcAMP modulation of the phosphoenolpyruvate carboxykinase gene.  Am J Physiol. 1995;  269 R584-R591
  • 20 Schütze S, Machleidt T, Krönke M. The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction.  J Leukoc Biol. 1994;  56 533-541
  • 21 Dinarello C. The interleukin-1 family: 10 years of discovery.  FASEB J. 1994;  8 1314-1325
  • 22 Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response.  Biochem J. 1990;  265 621-636
  • 23 Moshage H. Cytokines and the hepatic acute phase response.  J Pathol. 1997;  181 257-266
  • 24 Ramadori G, Christ B. Cytokines and the hepatic acute-phase response.  Semin Liver Dis. 1999;  19 141-155
  • 25 Lu B, Moser AH, Shigenaga JK, Feingold KR, Grunfeld C. Type II nuclear hormone receptors, coactivator, and target gene repression in adipose tissue in the acute-phase response.  J Lipid Res. 2006;  47 2179-2190
  • 26 Zhang B, Liu S, Perpetua MD, Walker WH, Harbrecht BG. Cytokines increase CRE binding but decrease CRE-mediated reporter activity in rat hepatocytes by increasing c-Jun.  Hepatology. 2004;  39 1343-1352
  • 27 Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF).  FASEB J. 1990;  4 2860-2867
  • 28 Cohen P, Frame S. The renaissance of GSK3.  Nat Rev Mol Cell Biol. 2001;  2 769-776
  • 29 Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target.  Trends Mol Med. 2002;  8 126-132
  • 30 Lochhead PA, Coghlan M, Rice SQJ, Sutherland C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression.  Diabetes. 2001;  50 937-946
  • 31 Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis.  Am J Physiol Endocrinol Metab. 2003;  285 E685-692
  • 32 Christ B, Yazici E, Nath A. Phosphatidylinositol 3-kinase and protein kinase C contribute to the inhibition by interleukin 6 of phosphoenolpyruvate carboxykinase gene expression in cultured rat hepatocytes.  Hepatology. 2000;  31 461-468

Correspondence

Prof. Dr. B. Christ

1st Department of Medicine

Molecular Hepatology Laboratory

Martin-Luther-University of Halle/Wittenberg

Heinrich-Damerow-Straße 1

06120 Halle/Saale

Germany

Phone: + 49/345/552 29 03

Fax: +49/345/552 28 94

Email: bruno.christ@medizin.uni-halle.de

    >