Horm Metab Res 2008; 40(2): 89-98
DOI: 10.1055/s-2007-1022549
Review

© Georg Thieme Verlag KG Stuttgart · New York

Dendritic Cell Based Immunotherapy - A Promising Therapeutic Approach for Endocrine Malignancies

S. Sbiera 1 , S. Wortmann 1 , M. Fassnacht 1
  • 1Department of Internal Medicine I, Endocrine and Diabetes Unit, University of Wuerzburg, Wuerzburg, Germany
Further Information

Publication History

received 20.09.2007

accepted 23.10.2007

Publication Date:
19 February 2008 (online)

Abstract

Dendritic cells (DCs) are the most potent antigen presenting cells in the human organism. Ever since the discovery of their function in the self/nonself discrimination, DCs have been seen as potential candidates for therapy in malignant tumors. With the exception of differentiated thyroid cancer, endocrine malignancies are rare tumors and apart from surgical intervention there is no truly established method for their treatment. Therefore, the prognosis of many endocrine carcinomas is still poor and new therapeutic options are needed. In the last decade, different immunotherapeutic approaches have shown promising results in other solid tumors. In recent studies, immunotherapy using DCs has been proven to be safe and effective to induce antitumor immune responses leading to tumor regression and even rejection of cancer in some cases. This review will summarize the latest progress in DCs based immunotherapy with special focus on the limited experience in endocrine malignancies. With regard to these tumors, it is of special interest which antigens could serve as potential target antigens for future trials. We also discuss what steps have to be taken to develop a better immunotherapy in endocrine tumors.

References

  • 1 Lewis DE, Giorgi JV, Warner NL. Flow cytometry analysis of T cells and continuous T-cell lines from autoimmune MRL/l mice.  Nature. 1981;  289 298-300
  • 2 Hogan PG, Basten A. What are killer cells and what do they do?.  Blood Rev. 1988;  2 50-58
  • 3 Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape.  Immunology. 2007;  121 1-14
  • 4 Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U. Natural T cell immunity against cancer.  Clin Cancer Res. 2003;  9 4296-4303
  • 5 Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma.  Int Immunol. 2001;  13 459-463
  • 6 Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy.  Nat Immunol. 2001;  2 293-299
  • 7 Steinman RM. The dendritic cell system and its role in immunogenicity.  Annu Rev Immunol. 1991;  9 271-296
  • 8 Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells.  Annu Rev Immunol. 2000;  18 767-811
  • 9 Banchereau J, Steinman RM. Dendritic cells and the control of immunity.  Nature. 1998;  392 245-252
  • 10 Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy.  Cell. 2001;  106 271-274
  • 11 Bracho F, Ven C van de, Areman E, Hughes RM, Davenport V, Bradley MB, Cai JW, Cairo MS. A comparison of ex vivo expanded DCs derived from cord blood and mobilized adult peripheral blood plastic-adherent mononuclear cells: decreased alloreactivity of cord blood DCs.  Cytotherapy. 2003;  5 349-361
  • 12 Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer.  Nat Rev Immunol. 2005;  5 296-306
  • 13 Davis ID, Jefford M, Parente P, Cebon J. Rational approaches to human cancer immunotherapy.  J Leukoc Biol. 2003;  73 3-29
  • 14 Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes.  Nat Immunol. 2002;  3 999-1005
  • 15 Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects.  Nat Rev Immunol. 2004;  4 941-952
  • 16 Ilias I, Pacak K. Diagnosis and management of tumors of the adrenal medulla.  Horm Metab Res. 2005;  37 717-721
  • 17 Allolio B, Fassnacht M. Clinical review: Adrenocortical carcinoma: clinical update.  J Clin Endocrinol Metab. 2006;  91 2027-2037
  • 18 Cornett WR, Sharma AK, Day TA, Richardson MS, Hoda RS, Heerden JA van, Fernandes JK. Anaplastic thyroid carcinoma: an overview.  Curr Oncol Rep. 2007;  9 152-158
  • 19 Scholz T, Eisenhofer G, Pacak K, Dralle H, Lehnert H. Clinical review: Current treatment of malignant pheochromocytoma.  J Clin Endocrinol Metab. 2007;  92 1217-1225
  • 20 Rawat N, Khetan N, Williams DW, Baxter JN. Parathyroid carcinoma.  Br J Surg. 2005;  92 1345-1353
  • 21 Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J. CD34+hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis.  Blood. 1997;  90 1458-1470
  • 22 Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ. The nature of the principal type 1 interferon-producing cells in human blood.  Science. 1999;  284 1835-1837
  • 23 Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon.  Nat Med. 1999;  5 919-923
  • 24 Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M, Pequignot M, Casares N, Terme M, Flament C, Opolon P, Lecluse Y, Metivier D, Tomasello E, Vivier E, Ghiringhelli F, Martin F, Klatzmann D, Poynard T, Tursz T, Raposo G, Yagita H, Ryffel B, Kroemer G, Zitvogel L. A novel dendritic cell subset involved in tumor immunosurveillance.  Nat Med. 2006;  12 214-219
  • 25 Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M, Brockstedt D, Dubensky TW, Stins MF, Lanier LL, Pardoll DM, Housseau F. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity.  Nat Med. 2006;  12 207-213
  • 26 Dubsky P, Ueno H, Piqueras B, Connolly J, Banchereau J, Palucka AK. Human dendritic cell subsets for vaccination.  J Clin Immunol. 2005;  25 551-572
  • 27 Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells.  J Exp Med. 2001;  193 F5-F9
  • 28 Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?.  Trends Immunol. 2002;  23 445-449
  • 29 Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells.  J Exp Med. 2001;  193 233-238
  • 30 Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G. Proliferating dendritic cell progenitors in human blood.  J Exp Med. 1994;  180 83-93
  • 31 Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.  J Exp Med. 1994;  179 1109-1118
  • 32 Houghton AN, Gold JS, Blachere NE. Immunity against cancer: lessons learned from melanoma.  Curr Opin Immunol. 2001;  13 134-140
  • 33 Mohamadzadeh M, Berard F, Essert G, Chalouni C, Pulendran B, Davoust J, Bridges G, Palucka AK, Banchereau J. Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells.  J Exp Med. 2001;  194 1013-1020
  • 34 Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice.  J Exp Med. 2000;  191 1777-1788
  • 35 Parlato S, Santini SM, Lapenta C, Di Pucchio T, Logozzi M, Spada M, Giammarioli AM, Malorni W, Fais S, Belardelli F. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities.  Blood. 2001;  98 3022-3029
  • 36 Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L, Arienti F, Belardelli F, Parmiani G, Rivoltini L. Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+T cell responses against human tumor antigens.  J Immunol. 2004;  172 5363-5370
  • 37 Nestle FO, Farkas A, Conrad C. Dendritic-cell-based therapeutic vaccination against cancer.  Curr Opin Immunol. 2005;  17 163-169
  • 38 Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy.  Curr Opin Immunol. 2003;  15 138-147
  • 39 Jenne L, Schuler G, Steinkasserer A. Viral vectors for dendritic cell-based immunotherapy.  Trends Immunol. 2001;  22 102-107
  • 40 Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells.  Immunol Rev. 2004;  199 251-263
  • 41 Tendeloo VF Van, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Broeckhoven C Van, Bockstaele DR Van, Berneman ZN. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells.  Blood. 2001;  98 49-56
  • 42 Wu TC, Guarnieri FG, Staveley-O’Carroll KF, Viscidi RP, Levitsky HI, Hedrick L, Cho KR, August JT, Pardoll DM. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens.  Proc Natl Acad Sci USA. 1995;  92 11671-11675
  • 43 Fassnacht M, Lee J, Milazzo C, Boczkowski D, Su Z, Nair S, Gilboa E. Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy.  Clin Cancer Res. 2005;  11 5566-5571
  • 44 Voorzanger-Rousselot N, Garnero P. Biochemical markers in oncology. Part I: molecular basis. Part II: clinical uses.  Cancer Treat Rev. 2007;  33 230-283
  • 45 Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells.  Cancer Immunol Immunother. 2001;  50 3-15
  • 46 Parmiani G, Filippo A De, Novellino L, Castelli C. Unique human tumor antigens: immunobiology and use in clinical trials.  J Immunol. 2007;  178 1975-1979
  • 47 Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update.  Cancer Immunol Immunother. 2005;  54 187-207
  • 48 Li G, Ali SA, MacArdle SE, Mian S, Ahmad M, Miles A, Rees RC. Immunity to tumour antigens.  Curr Pharm Des. 2005;  11 3501-3509
  • 49 Bruggen P van der, Traversari C, Chomez P, Lurquin C, Plaen E de, Eynde B van den, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.  Science. 1991;  254 1643-1647
  • 50 Traversari C, Bruggen P van der, Luescher IF, Lurquin C, Chomez P, Van Pel A, Plaen E De, Amar-Costesec A, Boon T. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E.  J Exp Med. 1992;  176 1453-1457
  • 51 Boel P, Wildmann C, Sensi ML, Brasseur R, Renauld JC, Coulie P, Boon T, Bruggen P van der. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes.  Immunity. 1995;  2 167-175
  • 52 Eynde B Van den, Peeters O, Backer O De, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma.  J Exp Med. 1995;  182 689-698
  • 53 Plaen E De, Arden K, Traversari C, Gaforio JJ, Szikora JP, Smet C De, Brasseur F, Bruggen P van der, Lethe B, Lurquin C. et al . Structure, chromosomal localization, and expression of 12 genes of the MAGE family.  Immunogenetics. 1994;  40 360-369
  • 54 Jungbluth AA, Silva  Jr  WA, Iversen K, Frosina D, Zaidi B, Coplan K, Eastlake-Wade SK, Castelli SB, Spagnoli GC, Old LJ, Vogel M. Expression of cancer-testis (CT) antigens in placenta.  Cancer Immun. 2007;  7 15
  • 55 Jassim A, Ollier W, Payne A, Biro A, Oliver RT, Festenstein H. Analysis of HLA antigens on germ cells in human semen.  Eur J Immunol. 1989;  19 1215-1220
  • 56 Blackburn EH. Telomerases.  Annu Rev Biochem. 1992;  61 113-129
  • 57 Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer.  Science. 1994;  266 2011-2015
  • 58 Colnaghi R, Connell CM, Barrett RM, Wheatley SP. Separating the anti-apoptotic and mitotic roles of survivin.  J Biol Chem. 2006;  281 33450-33456
  • 59 Lens SM, Vader G, Medema RH. The case for survivin as mitotic regulator.  Curr Opin Cell Biol. 2006;  18 616-622
  • 60 Chiou SK, Jones MK, Tarnawski AS. Survivin - an anti-apoptosis protein: its biological roles and implications for cancer and beyond.  Med Sci Monit. 2003;  9 PI25-PI29
  • 61 Zaffaroni N, Pennati M, Daidone MG. Survivin as a target for new anticancer interventions.  J Cell Mol Med. 2005;  9 360-372
  • 62 Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells.  Nat Med. 2000;  6 1011-1017
  • 63 Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J. Autologous dendritic cell vaccines for non-small-cell lung cancer.  J Clin Oncol. 2004;  22 2808-2815
  • 64 Nagaraj S, Pisarev V, Kinarsky L, Sherman S, Muro-Cacho C, Altieri DC, Gabrilovich DI. Dendritic cell-based full-length survivin vaccine in treatment of experimental tumors.  J Immunother (1997). 2007;  30 169-179
  • 65 Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E. Synergy between tumor immunotherapy and antiangiogenic therapy.  Blood. 2003;  102 964-971
  • 66 Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, Eliceiri BP, Reisfeld RA. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth.  Nat Med. 2002;  8 1369-1375
  • 67 LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium.  Nature. 2001;  412 877-884
  • 68 LeCouter J, Lin R, Ferrara N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis.  Nat Med. 2002;  8 913-917
  • 69 Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers.  Proc Natl Acad Sci USA. 1994;  91 5657-5661
  • 70 Bauvois B. Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis?.  Oncogene. 2004;  23 317-329
  • 71 Henry LR, Lee HO, Lee JS, Klein-Szanto A, Watts P, Ross EA, Chen WT, Cheng JD. Clinical implications of fibroblast activation protein in patients with colon cancer.  Clin Cancer Res. 2007;  13 1736-1741
  • 72 Kelly T. Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy.  Drug Resist Updat. 2005;  8 51-58
  • 73 Busek P, Malik R, Sedo A. Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer.  Int J Biochem Cell Biol. 2004;  36 408-421
  • 74 Miescher S, Whiteside TL, Moretta L, Fliedner V von. Clonal and frequency analyses of tumor-infiltrating T lymphocytes from human solid tumors.  J Immunol. 1987;  138 4004-4011
  • 75 Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion.  Nat Rev Immunol. 2006;  6 715-727
  • 76 Chattopadhyay S, Chakraborty NG, Mukherji B. Regulatory T cells and tumor immunity.  Cancer Immunol Immunother. 2005;  54 1153-1161
  • 77 Gajewski TF, Meng Y, Harlin H. Immune suppression in the tumor microenvironment.  J Immunother (1997). 2006;  29 233-240
  • 78 Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity.  Cancer Res. 2007;  67 371-380
  • 79 Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.  Nat Med. 1996;  2 52-58
  • 80 Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.  Nat Med. 1998;  4 328-332
  • 81 Holtl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M. CD83+blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer.  Lancet. 1998;  352 1358
  • 82 Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME, Lyerly HK. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen.  Clin Cancer Res. 1999;  5 1331-1338
  • 83 Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration.  Cancer Res. 2001;  61 842-847
  • 84 Cranmer LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer.  Cancer Immunol Immunother. 2004;  53 275-306
  • 85 Gilboa E. DC-based cancer vaccines.  J Clin Invest. 2007;  117 1195-1203
  • 86 Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, Driesch P von den, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma.  J Exp Med. 1999;  190 1669-1678
  • 87 Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine.  Cancer Res. 2001;  61 6451-6458
  • 88 Fay JW, Palucka AK, Paczesny S, Dhodapkar M, Johnston DA, Burkeholder S, Ueno H, Banchereau J. Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells.  Cancer Immunol Immunother. 2006;  55 1209-1218
  • 89 Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors.  J Clin Invest. 2002;  109 409-417
  • 90 Lesterhuis WJ, Vries IJ de, Adema GJ, Punt CJ. Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results.  Ann Oncol. 2004;  15 ((Suppl 4: iv)) 145-151
  • 91 Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines.  Nat Med. 2004;  10 909-915
  • 92 Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tuttenberg A, Becker JC, Keikavoussi P, Kampgen E, Schuler G. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG.  Ann Oncol. 2006;  17 563-570
  • 93 Schott M, Feldkamp J, Schattenberg D, Seissler J, Scherbaum WA. Dendritic cell immunotherapy in disseminated parathyroid carcinoma.  Lancet. 1999;  353 1188-1189
  • 94 Schott M, Feldkamp J, Lettmann M, Simon D, Scherbaum WA, Seissler J. Dendritic cell immunotherapy in a neuroendocrine pancreas carcinoma.  Clin Endocrinol (Oxf). 2001;  55 271-277
  • 95 Schott M. Immunesurveillance by dendritic cells: potential implication for immunotherapy of endocrine cancers.  Endocr Relat Cancer. 2006;  13 779-795
  • 96 Schott M, Seissler J, Lettmann M, Fouxon V, Scherbaum WA, Feldkamp J. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination.  J Clin Endocrinol Metab. 2001;  86 4965-4969
  • 97 Zhang R, DeGroot LJ. A monoclonal antibody against rat calcitonin inhibits the growth of a rat medullary thyroid carcinoma cell line in vitro.  Endocrinology. 1997;  138 1697-1703
  • 98 Stift A, Friedl J, Dubsky P, Bachleitner-Hofmann T, Schueller G, Zontsich T, Benkoe T, Radelbauer K, Brostjan C, Jakesz R, Gnant M. Dendritic cell-based vaccination in solid cancer.  J Clin Oncol. 2003;  21 135-142
  • 99 Stift A, Sachet M, Yagubian R, Bittermann C, Dubsky P, Brostjan C, Pfragner R, Niederle B, Jakesz R, Gnant M, Friedl J. Dendritic cell vaccination in medullary thyroid carcinoma.  Clin Cancer Res. 2004;  10 2944-2953
  • 100 Schott M, Reincke M, Ortmann D, Bornstein SR. Immunotherapy: new strategies for the treatment of adrenocortical carcinoma.  Horm Metab Res. 2003;  35 451-453
  • 101 Schott M, Willenberg HS, Papewalis C, Scherbaum WA, Bornstein SR. Dendritic cell vaccination: Potential immunotherapy for adrenocortical carcinoma.  Horm Metab Res. 2004;  36
  • 102 Papewalis C, Fassnacht M, Willenberg HS, Domberg J, Fenk R, Rohr UP, Schinner S, Bornstein SR, Scherbaum WA, Schott M. Dendritic cells as potential adjuvant for immunotherapy in adrenocortical carcinoma.  Clin Endocrinol (Oxf). 2006;  65 215-222
  • 103 Ortmann D, Hausmann J, Beuschlein F, Schmenger K, Stahl M, Geissler M, Reincke M. Steroidogenic acute regulatory (StAR)-directed immunotherapy protects against tumor growth of StAR-expressing Sp2-0 cells in a rodent adrenocortical carcinoma model.  Endocrinology. 2004;  145 1760-1766
  • 104 Reincke M, Ortmann D, Hausmann J, Beuschlein F. Cytotoxic T-cell response against steroidogenic acute regulatory protein using DNA vaccination followed by vaccinia virus infection in a mouse adrenal carcinoma model.  Horm Metab Res. 2004;  36 411-414
  • 105 Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts.  Cancer Res. 2005;  65 11156-11163
  • 106 Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, MacGowan P, Linsley PS. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4.  Cell. 1992;  71 1093-1102
  • 107 Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors.  Nat Med. 1997;  3 682-685
  • 108 Ito D, Ogasawara K, Iwabuchi K, Inuyama Y, Onoe K. Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4mAb.  J Immunol. 2000;  164 1230-1235
  • 109 Pedersen AE, Buus S, Claesson MH. Treatment of transplanted CT26 tumour with dendritic cell vaccine in combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4.  Cancer Lett. 2006;  235 229-238
  • 110 Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade.  J Immunol. 2005;  175 7746-7754
  • 111 Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy.  Nat Immunol. 2002;  3 611-618
  • 112 Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity.  Cancer Res. 2005;  65 1089-1096
  • 113 Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagher M, Kramer A, Green SJ, O’Dwyer PJ, Running KL, Huhn RD, Antonia SJ. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody.  J Clin Oncol. 2007;  25 876-883
  • 114 Geldart T, Illidge T. Anti-CD 40 monoclonal antibody.  Leuk Lymphoma. 2005;  46 1105-1113
  • 115 Lake RA, Robinson BW. Immunotherapy and chemotherapy-a practical partnership.  Nat Rev Cancer. 2005;  5 397-405
  • 116 Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake.  J Clin Invest. 2006;  116 1955-1962
  • 117 Schott M, Feldkamp J, Schattenberg D, Krueger T, Dotzenrath C, Seissler J, Scherbaum WA. Induction of cellular immunity in a parathyroid carcinoma treated with tumor lysate-pulsed dendritic cells.  Eur J Endocrinol. 2000;  142 300-306
  • 118 Ito Y, Yoshida H, Uruno T, Nakano K, Miya A, Kobayashi K, Yokozawa T, Matsuzuka F, Matsuura N, Kakudo K, Kuma K, Miyauchi A. Survivin expression is significantly linked to the dedifferentiation of thyroid carcinoma.  Oncol Rep. 2003;  10 1337-1340
  • 119 Du ZX, Zhang HY, Gao da X, Wang HQ, Li YJ, Liu GL. Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary thyroid carcinoma cells.  Exp Mol Med. 2006;  38 230-240
  • 120 Grabowski P, Griss S, Arnold CN, Horsch D, Goke R, Arnold R, Heine B, Stein H, Zeitz M, Scherubl H. Nuclear survivin is a powerful novel prognostic marker in gastroenteropancreatic neuroendocrine tumor disease.  Neuroendocrinology. 2005;  81 1-9
  • 121 Vikman S, Essand M, Cunningham JL, Torre M de la, Oberg K, Totterman TH, Giandomenico V. Gene expression in midgut carcinoid tumors: potential targets for immunotherapy.  Acta Oncol. 2005;  44 32-40
  • 122 Koch CA, Vortmeyer AO, Diallo R, Poremba C, Giordano TJ, Sanders D, Bornstein SR, Chrousos GP, Pacak K. Survivin: a novel neuroendocrine marker for pheochromocytoma.  Eur J Endocrinol. 2002;  146 381-388
  • 123 Koperek O, Scheuba C, Puri C, Birner P, Haslinger C, Rettig W, Niederle B, Kaserer K, Garin Chesa P. Molecular characterization of the desmoplastic tumor stroma in medullary thyroid carcinoma.  Int J Oncol. 2007;  31 59-67
  • 124 Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers.  Proc Natl Acad Sci USA. 1990;  87 7235-7239
  • 125 Vieira JM, Santos SC, Espadinha C, Correia I, Vag T, Casalou C, Cavaco BM, Catarino AL, Dias S, Leite V. Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: a potential autocrine loop.  Eur J Endocrinol. 2005;  153 701-709
  • 126 Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P, Belghiti J, Flejou J, Degott C. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours.  Histopathology. 1998;  32 133-138
  • 127 Takekoshi K, Isobe K, Yashiro T, Hara H, Ishii K, Kawakami Y, Nakai T, Okuda Y. Expression of vascular endothelial growth factor (VEGF) and its cognate receptors in human pheochromocytomas.  Life Sci. 2004;  74 863-871
  • 128 Wang SL, Chen WT, Wu MT, Chan HM, Yang SF, Chai CY. Expression of human telomerase reverse transcriptase in thyroid follicular neoplasms: an immunohistochemical study.  Endocr Pathol. 2005;  16 211-218
  • 129 Saji M, Xydas S, Westra WH, Liang CK, Clark DP, Udelsman R, Umbricht CB, Sukumar S, Zeiger MA. Human telomerase reverse transcriptase (hTERT) gene expression in thyroid neoplasms.  Clin Cancer Res. 1999;  5 1483-1489
  • 130 Takano T, Ito Y, Matsuzuka F, Miya A, Kobayashi K, Yoshida H, Miyauchi A. Quantitative measurement of telomerase reverse transcriptase, thyroglobulin and thyroid transcription factor 1 mRNAs in anaplastic thyroid carcinoma tissues and cell lines.  Oncol Rep. 2007;  18 715-720
  • 131 Asaad NY, Abd El-Wahed MM, Mohammed AG. Human telomerase reverse transcriptase (hTERT) gene expression in thyroid carcinoma: diagnostic and prognostic role.  J Egypt Natl Canc Inst. 2006;  18 8-16
  • 132 Luo Z, Li J, Qin Y, Ma Y, Liang X, Xian J, Lu D, Wei M, Yang JY, Yang MQ, He Z. Differential expression of human telomerase catalytic subunit mRNA by in situ hybridization in pheochromocytomas.  Endocr Pathol. 2006;  17 387-398
  • 133 Isobe K, Yashiro T, Omura S, Kaneko M, Kaneko S, Kamma H, Tatsuno I, Takekoshi K, Kawakami Y, Nakai T. Expression of the human telomerase reverse transcriptase in pheochromocytoma and neuroblastoma tissues.  Endocr J. 2004;  51 47-52
  • 134 Boltze C, Mundschenk J, Unger N, Schneider-Stock R, Peters B, Mawrin C, Hoang-Vu C, Roessner A, Lehnert H. Expression profile of the telomeric complex discriminates between benign and malignant pheochromocytoma.  J Clin Endocrinol Metab. 2003;  88 4280-4286
  • 135 Zenkert S, Schubert B, Fassnacht M, Beuschlein F, Allolio B, Reincke M. Steroidogenic acute regulatory protein mRNA expression in adrenal tumours.  Eur J Endocrinol. 2000;  142 294-299
  • 136 Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B. Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis.  J Clin Endocrinol Metab. 1997;  82 3054-3058

Correspondence

M. FassnachtMD 

Department of Internal Medicine I

University Hospital Wuerzburg

Jospeh-Schneider Str. 2

97080 Wuerzburg

Germany

Phone: +49/931/201 365 07

Fax: +49/931/201 367 66

Email: fassnacht_m@medizin.uni-wuerzburg.de

    >