Horm Metab Res 2008; 40(2): 108-116
DOI: 10.1055/s-2007-1022565
Original

© Georg Thieme Verlag KG Stuttgart · New York

Dendritic Cell Vaccination Induces Tumor Epitope-specific Th1 Immune Response in Medullary Thyroid Carcinoma

C. Papewalis 1 , M. Wuttke 1 , B. Jacobs 1 , J. Domberg 1 , H. Willenberg 1 , T. Baehring 1 , K. Cupisti 2 , A. Raffel 2 , L. Chao 1 , R. Fenk 3 , J. Seissler 4 , W. A. Scherbaum 1 , M. Schott 1
  • 1Department of Endocrinology, Diabetes, and Rheumatology, University Hospital Duesseldorf, Duesseldorf, Germany
  • 2Department of General, Visceral, and Pediatric Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
  • 3Department of Hematology, Oncology, and Clinical Immunology, University Hospital Duesseldorf, Duesseldorf, Germany
  • 4Medical Clinic Innenstadt, Ludwig-Maximilians-University Munich, Munich, Germany
Further Information

Publication History

received 07.12.2007

accepted 21.12.2007

Publication Date:
19 February 2008 (online)

Abstract

The existence of inherited aggressive forms of medullary thyroid carcinoma (MTC) and their resistance to classical therapies make it a prime candidate for adoptive immunotherapy. Highly potent antigen-presenting cells, namely dendritic cells (DCs), may serve as an interesting tool for anticancer vaccination. Here we report on the in vitro findings of a vaccination trial in five MTC patients, who were treated with a new DC generation protocol consisting of granulocyte-macrophage colony-stimulating factor and interferon-α (IFN-DCs). These cells were pulsed with tumor-specific calcitonin and administered twice. In two patients who responded to therapy we found a large increase (in mean 2.9±1.9%) of antigen-specific IFN-γ-secreting CD4+ cells as well as an increase of granzyme B positive CD8+ cells (mean 2.2±0.2%) in the peripheral blood. In parallel, a decrease of CD4+/CD25+/FoxP3+ regulatory T cells was seen. Importantly, in vitro stimulation of PBMC with 10 different 15mer calcitonin peptides resulted in the identification of two HLA class II epitope regions within the central part of full-length calcitonin. These data were in accordance with the results drawn from the computer-based algorithm epitope prediction software SYFPEITHI. Measurement of different pro- and anti-angiogenic factors did not allow for a distinct outcome of prediction of the treated patients. In summary, we have demonstrated that immunization with IFN-DCs leads to a tumor epitope-specific immune response in MTC patients and may, therefore, represent a promising tool for future vaccination trials.

References

  • 1 Kebebew E, Greenspan FS, Clark OH, Woeber KA, Grunwell J. Extent of disease and practice patterns for medullary thyroid cancer.  J Am Coll Surg. 2005;  200 890-896
  • 2 Tisell LE, Hansson G, Jansson S. Surgical treatment of medullary carcinoma of the thyroid.  Horm Metab Res. 1989;  21 ((Suppl)) 29-31
  • 3 Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems.  Cancer. 2000;  88 1139-1148
  • 4 Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy.  Curr Opin Immunol. 2003;  15 138-147
  • 5 Schott M, Seissler J. Dendritic cell vaccination: new hope for the treatment of metastasized endocrine malignancies.  Trends Endocrinol Metab. 2003;  14 156-162
  • 6 Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide- loaded monocyte-derived dendritic cells.  J Exp Med. 2002;  195 1279-1288
  • 7 Nestle FO, Conrad C. Dendritic cell therapy for skin cancer.  Vox Sang. 2004;  87 ((Suppl 2)) 112-114
  • 8 Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, Beckhoven A van, Liles TM, Engleman EG, Levy R. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients.  Blood. 2002;  99 1517-1526
  • 9 Jacobs B, Wuttke M, Papewalis C, Seissler J, Schott M. Dendritic cell subtypes and in vitro generation cells.  Horm Metab Res. 2008;  40 99-107
  • 10 Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.  J Exp Med. 1994;  179 1109-1118
  • 11 Sorg RV, Ozcan Z, Brefort T, Fischer J, Ackermann R, Muller M, Wernet P. Clinical-scale generation of dendritic cells in a closed system.  J Immunother (1997). 2003;  26 374-383
  • 12 Caux C, Vanbervliet B, Massacrier C, Ait-Yahia S, Vaure C, Chemin K, Dieu-Nosjean And MC, Vicari A. Regulation of dendritic cell recruitment by chemokines.  Transplantation. 2002;  73 S7-S11
  • 13 Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G. Proliferating dendritic cell progenitors in human blood.  J Exp Med. 1994;  180 83-93
  • 14 Schott M, Seissler J, Lettmann M, Fouxon V, Scherbaum WA, Feldkamp J. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination.  J Clin Endocrinol Metab. 2001;  86 4965-4969
  • 15 Schott M, Feldkamp J, Klucken M, Kobbe G, Scherbaum WA, Seissler J. Calcitonin-specific antitumor immunity in medullary thyroid carcinoma following dendritic cell vaccination.  Cancer Immunol Immunother. 2002;  51 663-668
  • 16 Bachleitner-Hofmann T, Stift A, Friedl J, Pfragner R, Radelbauer K, Dubsky P, Schuller G, Benko T, Niederle B, Brostjan C, Jakesz R, Gnant M. Stimulation of autologous antitumor T-cell responses against medullary thyroid carcinoma using tumor lysate-pulsed dendritic cells.  J Clin Endocrinol Metab. 2002;  87 1098-1104
  • 17 Stift A, Sachet M, Yagubian R, Bittermann C, Dubsky P, Brostjan C, Pfragner R, Niederle B, Jakesz R, Gnant M, Friedl J. Dendritic cell vaccination in medullary thyroid carcinoma.  Clin Cancer Res. 2004;  10 2944-2953
  • 18 Jacobs B, Wuttke M, Papewalis C, Fenk R, Stüssgen C, Baehring T, Schinner S, Raffel A, Seissler J, Schott M. Characterization of monocyte-derived IFN-generated dendritic cells.  Horm Metab Res. 2008;  40 117-121
  • 19 Parlato S, Santini SM, Lapenta C, Di Pucchio T, Logozzi M, Spada M, Giammarioli AM, Malorni W, Fais S, Belardelli F. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities.  Blood. 2001;  98 3022-3029
  • 20 Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice.  J Exp Med. 2000;  191 1777-1788
  • 21 Pavel ME, Hassler G, Baum U, Hahn EG, Lohmann T, Schuppan D. Circulating levels of angiogenic cytokines can predict tumour progression and prognosis in neuroendocrine carcinomas.  Clin Endocrinol (Oxf). 2005;  62 434-443
  • 22 Zhao H, Grossman HB, Delclos GL, Hwang LY, Troisi CL, Chamberlain RM, Chenoweth MA, Zhang H, Spitz MR, Wu X. Increased plasma levels of angiogenin and the risk of bladder carcinoma: from initiation to recurrence.  Cancer. 2005;  104 30-35
  • 23 Brostjan C, Bayer A, Zommer A, Gornikiewicz A, Roka S, Benko T, Yaghubian R, Jakesz R, Steger G, Gnant M, Friedl J, Stift A. Monitoring of circulating angiogenic factors in dendritic cell-based cancer immunotherapy.  Cancer. 2003;  98 2291-2301
  • 24 Malinowski K, Pullis C, Raisbeck AP, Rapaport FT. Modulation of human lymphocyte marker expression by gamma irradiation and mitomycin C.  Cell Immunol. 1992;  143 368-377
  • 25 Papewalis C, Jacobs B, Wuttke M, Ullrich E, Fenk R, Willenberg H, Schinner S, Cohnen M, Seissler J, Scherbaum WA, Schott M. IFN-alpha Skews Monocyte into CD56+ expressing Dendritic Cells with Potent Functional Activities in vitro and in vivo.  J Immunol. 2008;  180 1462-1470
  • 26 Carmeliet P. Angiogenesis in health and disease.  Nat Med. 2003;  9 653-660
  • 27 Carmeliet P. Manipulating angiogenesis in medicine.  J Intern Med. 2004;  255 538-561
  • 28 Kimura K, Kawamura T, Kadotani S, Inada H, Niihira S, Yamano T. Peptide-specific cytotoxicity of T lymphocytes against glutamic acid decarboxylase and insulin in type 1 diabetes mellitus.  Diabetes Res Clin Pract. 2001;  51 173-179
  • 29 Ma Z, Westermark P, Westermark GT. Amyloid in human islets of Langerhans: immunologic evidence that islet amyloid polypeptide is modified in amyloidogenesis.  Pancreas. 2000;  21 212-218
  • 30 Betea D, Bradwell AR, Harvey TC, Mead GP, Schmidt-Gayk H, Ghaye B, Daly AF, Beckers A. Hormonal and biochemical normalization and tumor shrinkage induced by anti-parathyroid hormone immunotherapy in a patient with metastatic parathyroid carcinoma.  J Clin Endocrinol Metab. 2004;  89 3413-3420
  • 31 Bradwell AR, Harvey TC. Control of hypercalcaemia of parathyroid carcinoma by immunisation.  Lancet. 1999;  353 370-373
  • 32 Zhang R, DeGroot LJ. A monoclonal antibody against rat calcitonin inhibits the growth of a rat medullary thyroid carcinoma cell line in vitro.  Endocrinology. 1997;  138 1697-1703
  • 33 Zhang R, Scherberg N, DeGroot LJ. Monoclonal antibodies to rat calcitonin: their use in antigenic mapping and immunohistochemistry.  Endocrinology. 1997;  138 1691-1696
  • 34 Neumann F, Wagner C, Preuss KD, Kubuschok B, Schormann C, Stevanovic S, Pfreundschuh M. Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1 and presented by dendritic cells to circulating CD4+ T cells.  Blood. 2005;  106 3105-3113
  • 35 Rohn TA, Reitz A, Paschen A, Nguyen XD, Schadendorf D, Vogt AB, Kropshofer H. A novel strategy for the discovery of MHC class II-restricted tumor antigens: identification of a melanotransferrin helper T-cell epitope.  Cancer Res. 2005;  65 10068-10078
  • 36 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.  J Immunol. 1995;  155 1151-1164
  • 37 Casares N, Arribillaga L, Sarobe P, Dotor J, Lopez-Diaz DC, Melero I, Prieto J, Borras-Cuesta F, Lasarte JJ. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination.  J Immunol. 2003;  171 5931-5939
  • 38 Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Mysliwski A. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction.  Clin Immunol. 2004;  112 258-267
  • 39 Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S, Katsanis E. Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10.  Cancer Immunol Immunother. 2007;  56 48-59
  • 40 Romagnani C, Della CM, Kohler S, Moewes B, Radbruch A, Moretta L, Moretta A, Thiel A. Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+ T helper cells and CD4+ CD25hi T regulatory cells.  Eur J Immunol. 2005;  35 2452-2458
  • 41 Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells.  J Immunol. 2005;  175 4180-4183
  • 42 Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S, Monos D, Peritt D, Marincola F, Cai D, Birebent B, Bloome E, Kim J, Berencsi K, Mastrangelo M, Herlyn D. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta.  Cancer Res. 2002;  62 5267-5272
  • 43 Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells.  J Exp Med. 1996;  183 2669-2674
  • 44 Jarnicki AG, Lysaght J, Todryk S, Mills KH. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells.  J Immunol. 2006;  177 896-904
  • 45 Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers.  Clin Cancer Res. 2003;  9 4404-4408
  • 46 Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression.  Cancer. 2003;  98 1089-1099
  • 47 Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.  Cancer Res. 2001;  61 4766-4772
  • 48 Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation.  J Immunol. 2002;  168 4272-4276
  • 49 Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma.  Blood. 2006;  107 ((3)) 940-949
  • 50 Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, Knolle PA, Thomas RK, Bergwelt-Baildon M, Debey S, Hallek M, Schultze JL. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine.  Blood. 2005;  106 2018-2025
  • 51 Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells.  J Exp Med. 2004;  200 771-782
  • 52 Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ. Regulatory T cells in ovarian cancer: biology and therapeutic potential.  Am J Reprod Immunol. 2005;  54 369-377
  • 53 Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood.  J Immunol. 2001;  167 1245-1253
  • 54 Kabelitz D, Wesch D, Oberg HH. Regulation of regulatory T cells: role of dendritic cells and toll-like receptors.  Crit Rev Immunol. 2006;  26 291-306
  • 55 Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation.  Nature. 2000;  407 242-248
  • 56 Matsumoto S, Yamada Y, Narikiyo M, Ueno M, Tamaki H, Miki K, Wakatsuki K, Enomoto K, Yokotani T, Nakajima Y. Prognostic significance of platelet-derived growth factor-BB expression in human esophageal squamous cell carcinomas.  Anticancer Res. 2007;  27 2409-2414
  • 57 Poon RT, Fan ST, Wong J. Clinical implications of circulating angiogenic factors in cancer patients.  J Clin Oncol. 2001;  19 1207-1225
  • 58 Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM. Membrane associated proteases and their in­hibitors in tumour angiogenesis.  J Clin Pathol. 2004;  57 577-584
  • 59 Cataldo DD, Gueders MM, Rocks N, Sounni NE, Evrard B, Bartsch P, Louis R, Noel A, Foidart JM. Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors.  Cell Mol Biol (Noisy -le-grand). 2003;  49 875-884
  • 60 Sounni NE, Janssen M, Foidart JM, Noel A. Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.  Matrix Biol. 2003;  22 55-61
  • 61 Kugler A. Matrix metalloproteinases and their inhibitors.  Anticancer Res. 1999;  19 1589-1592
  • 62 Vasala K, Paakko P, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 immunoreactive protein as a prognostic marker in bladder cancer.  Urology. 2003;  62 952-957
  • 63 Pesta M, Topolcan O, Holubec Jr L, Rupert K, Cerna M, Holubec LS, Treska V, Finek J, Cerny R. Clinicopathological assessment and quantitative estimation of the matrix metalloproteinases MMP-2 and MMP-7 and the inhibitors TIMP-1 and TIMP-2 in colorectal carcinoma tissue samples.  Anticancer Res. 2007;  27 1863-1867
  • 64 Jinga DC, Blidaru A, Condrea I, Ardeleanu C, Dragomir C, Szegli G, Stefanescu M, Matache C. MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors.  J Cell Mol Med. 2006;  10 499-510
  • 65 Tetu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C, Trudel D. The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis.  Breast Cancer Res. 2006;  8 R28
  • 66 Kuvaja P, Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T. The absence of immunoreactivity for tissue inhibitor of metalloproteinase-1 (TIMP-1), but not for TIMP-2, protein is associated with a favorable prognosis in aggressive breast carcinoma.  Oncology. 2005;  68 196-203
  • 67 Moran A, Iniesta P, Garcia-Aranda C, Juan C De, Diaz-Lopez A, Sanchez-Pernaute A, Torres AJ, Diaz-Rubio E, Balibrea JL, Benito M. Clinical relevance of MMP-9, MMP-2, TIMP-1 and TIMP-2 in colorectal cancer.  Oncol Rep. 2005;  13 115-120
  • 68 Zhong H, Bowen JP. Antiangiogenesis drug design: multiple pathways targeting tumor vasculature.  Curr Med Chem. 2006;  13 849-862
  • 69 Ramanujan S, Koenig GC, Padera TP, Stoll BR, Jain RK. Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors.  Cancer Res. 2000;  60 1442-1448
  • 70 Almeida MQ, Latronico AC. The molecular pathogenesis of childhood adrenocortical tumors.  Horm Metab Res. 2007;  39 461-466
  • 71 Pavel ME, Hoppe S, Papadopoulos T, Linder V, Mohr B, Hahn EG, Lohmann T, Schuppan D. Adrenomedullin is a novel marker of tumor progression in neuroendocrine carcinomas.  Horm Metab Res. 2006;  38 112-118
  • 72 Stratakis CA. Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD)/Carney complex, and other bilateral hyperplasias: the NIH studies.  Horm Metab Res. 2007;  39 467-473

Correspondence

M. SchottMD 

Department of Endocrinology

Diabetes and Rheumatology

University Hospital Duesseldorf

Moorenstr.5

40225 Duesseldorf

Germany

Phone: +49/211/811 78 10

Fax: +49/211/811 78 60

Email: schottmt@uni-duesseldorf.de

    >