Der Nuklearmediziner 2007; 30(2): 123-131
DOI: 10.1055/s-2007-960526
© Georg Thieme Verlag Stuttgart · New York

Nuklearmedizinische Entzündungsdiagnostik - Osteomyelitis

Nuclear Medicine Evaluation of Infective Disease - OsteomyelitisV. Ivančević1
  • 1Nuklearmedizinische Gemeinschaftspraxis im Allgemeinen Krankenhaus, Celle
Further Information

Publication History

Publication Date:
04 June 2007 (online)

Zusammenfassung

In der nuklearmedizinischen Diagnostik der akuten Osteomyelitis stellt die Drei-Phasen-Knochenszintigrafie aufgrund ihrer hohen Sensitivität nach wie vor die Methode der Wahl dar. Bei nicht eindeutigem Befund sollte sie durch mit 99mTc in vitro oder in vivo markierte Leukozyten ergänzt werden. Bei der chronischen Osteomyelitis kann aufgrund des mittlerweile vorliegenden Datenmaterials die FDG-PET als das zuverlässigste bildgebende Verfahren angesehen werden. Ist sie nicht verfügbar, sollten bei Lokalisation der Osteomyelitis außerhalb der Wirbelsäule die Drei-Phasen-Knochenszintigrafie, in vitro oder in vivo markierte Leukozyten, die Galliumszintigrafie oder auch die Nanokolloidszintigrafie zum Einsatz kommen. Die FDG-PET hat auch in der Diagnostik der Spondylodiszitis ihre Überlegenheit gegenüber allen anderen bildgebenden Verfahren bewiesen. Sie wird gefolgt von der Galliumszintigrafie.

Abstract

In diagnosing acute osteomyelitis three-phase bone scintigraphy still represents the method of choice within the nuclear medicine armamentarium due to its high sensitivity. If the finding is indeterminate, it should be supplemented by 99mTc-leukocyte scintigraphy either with in vitro or in vivo labelled leukocytes. Based on data available so far, FDG-PET can meanwhile be considered as the most reliable imaging procedure in chronic osteomyelitis. If it is not available, three-phase bone scintigraphy, in vitro or in vivo labelled leukocytes, gallium or nanocolloid scintigraphy should be applied in non-spinal osteomyelitis. FDG-PET has proven its superiority over all the other imaging methods in spinal infection as well. It is followed by gallium scintigraphy.

Literatur

  • 1 Joppich I. Leitlinien der Deutschen Gesellschaft für Kinderchirurgie - Osteomyelitis. In: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften: AWMF Online. AWMF-Leitlinien Register Nr. 006/079 (1999): www.uni-duesseldorf.de/WWW/AWMF/ll/ki-ch079.htm
  • 2 Meller J, Siefker U, Becker W. Nuklearmedizinische Diagnostik erregerbedingter Skeletterkrankungen.  Nuklearmediziner. 2002;  25 238-249
  • 3 Genant H K, Bautovich G J, Singh M, Lathrop K A, Harper P V. Bone-seeking radionuclides: An in vivo study of factors affecting skeletal uptake.  Radiology. 1974;  113 373-382
  • 4 Siegel B A, Donovan R L, Alderson P O, Mack G R. Skeletal uptake of 99mTc-diphosphonate in relation to local bone blood flow.  Radiology. 1976;  120 121-123
  • 5 Zimmer A M, Isitman A T, Holmes R A. Enzymatic inhibition of diphosphonate: A proposed mechanism of tissue uptake.  J Nucl Med. 1975;  16 352-356
  • 6 Rosenthall L, Maye M. Observations in the mechanism of 99mTc-labeled phosphate complex uptake in metabolic bone disease.  Semin Nucl Med. 1976;  6 59-67
  • 7 Jones A G, Francis M D, Davis M A. Bone scanning: Radionuclide reaction mechanisms.  Semin Nucl Med. 1976;  6 3-18
  • 8 Tzen K Y, Oster Z H, Wagner  Jr H N, Tsan M F. Role of ironbinding proteins and enhanced capillary permeability in the accumulation of gallium-67.  J Nucl Med. 1980;  21 31-35
  • 9 Hoffer P. Gallium: Mechanisms.  J Nucl Med. 1980;  21 282-285
  • 10 Larson S M. Mechanisms of localisation of gallium-67 in tumors.  Semin Nucl Med. 1978;  8 193-204
  • 11 Vallabhajosula S, Goldsmith S J, Lipszyk H, Chahinian A P, Ohnuma T. 67Ga-transferrin and 67Ga-lactoferrin binding to tumor cells. Specific versus non-specific glycoprotein-cell interaction.  Eur J Nucl Med. 1983;  8 354-357
  • 12 Becker W. The contribution of nuclear medicine to the patient with infection.  Eur J Nucl Med. 1995;  22 1195-1211
  • 13 De Schrijver M, Streule K, Senekowitsch R, Friedrich R. Scintigraphy of inflammation with nanometer-sized colloidal tracers.  Nucl Med Commun. 1987;  8 895-908
  • 14 Corstens F HM, Claessens R AMJ. Imaging inflammation with human polyclonal immunoglobulin: not looked for, but discovered.  Eur J Nucl Med. 1992;  19 155-158
  • 15 Claessens R AMJ, Koenders E B, Boerman O C, Oyen W JG, Borm G F, Van der Meer J WM, Corstens F HM. Dissociation of indium from indium-111-labelled diethylenetriamine penta-acetic acid conjugated non-specific polyclonal human immunoglobulin G in inflammatory foci.  Eur J Nucl Med. 1995;  22 212-219
  • 16 Oyen W JG, Claessens R AMJ, van der Meer J WW, Corstens F HM. Biodistribution and kinetics of radiolabeled proteins in rats with focal infection.  J Nucl Med. 1992;  33 388-394
  • 17 McAfee J G, Thakur M L. Survey of radioactive agents for in vitro labelling of phagocytic leucycytes. 1. Soluble agents.  J Nucl Med. 1976;  17 145-150
  • 18 Thakur M L, Lavender J P, Arnot R N, Silvester D J, Segal A W. Indium-111-labeled autologous leukocytes in man.  J Nucl Med. 1977;  18 1014-1021
  • 19 Thakur M L, Segal A W, Louis L, Welch M J, Hopkins J, Peters T J. Indium-111-labelled cellular blood components: Mechanisms of labelling and intracellular location in human neutrophils.  J Nucl Med. 1977;  18 1022-1026
  • 20 Peters A M, Danpure H J, Osman S, Hawker R J, Henderson B L, Hodgson H J, Kelly J D, Neirinckx R D, Lavender J P. Clinical experience with 99mTc-hexamethylpropyleneamineoxime for labelling leucocytes and imaging inflammation.  Lancet. 1986;  2 946-949
  • 21 Neirinckx R D, Canning L R, Piper I M, Nowotnik D P, Pickett R D, Holmes R A, Volkert W A, Forster A M, Weisner P S, Marriott J A,. et al . Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion.  J Nucl Med. 1987;  28 191-202
  • 22 Costa D C, Lui D, Sinha A K, Jarritt P H, Ell P J. Intracellular localization of 99Tcm-d,l-HMPAO and 201Tl-DDC in rat brain.  Nucl Med Commun. 1989;  10 459-466
  • 23 Ivančević V, Dodig D, Livaković M, Hančević J, Ivančević D. Comparison of three-phase bone scan, three-phase 99m-Tc-HM-PAO leukocyte scan and 67-gallium scan in chronic bone infection.  Prog Clin Biol Res. 1990;  355 189-198
  • 24 Bosslet K, Lüben G, Schwarz A, Hundt E, Harthus H P, Seiler F R, Muhrer C, Kloppel G, Kayser K, Sedlacek H H. Immunohistochemical localization and molecular characteristics of three monoclonal antibody-defined epitopes detectable on carcinoembryonic antigen (CEA).  Int J Cancer. 1985;  36 75-84
  • 25 Becker W, Borst U, Fischbach W, Pasurka B, Schäfer R, Börner W. Kinetic data of in-vivo labeled granulocytes in humans with a murine 99mTc-labeled monoclonal antibody.  Eur J Nucl Med. 1989;  15 361-366
  • 26 Becker W. Entzündungsdiagnostik mit autologen Leukozyten und murinen monoklonalen Antikörpern.  Nuklearmediziner. 1992;  15 273-286
  • 27 Berberich R, Hennes P, Alexander C. Entzündungsnachweis und HAMA-Bildung nach Applikation des monokolonalen Antikörpers BW250/183.  Nuklearmedizin. 1992;  31 70-73
  • 28 Becker W, Goldenberg D M, Wolf F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions.  Semin Nucl Med. 1994;  24 142-153
  • 29 Hall A V, Solanki K K, Vinjamuri S, Britton K E, Das S S. Evaluation of the efficacy of 99m-Tc-Infecton, a novel agent for detecting sites of infection.  J Clin Pathol. 1998;  51 215-219
  • 30 Gemmel F, Dumarey N, Palestro C J. Radionuclide imaging of spinal infections.  Eur J Nucl Med Mol Imaging. 2006;  33 1226-1237
  • 31 Lazzeri E, Manca M, Molea N, Marchetti S, Consoli V, Bodei L, Bianchi R, Chinol M, Paganelli G, Mariani G. Clinical validation of the avidin/indium-111 biotin approach for imaging infection/inflammation in orthopaedic patients.  Eur J Nucl Med. 1999;  26 606-614
  • 32 Shepherd P R, Kahn B B. Glucose transporters and insulin action: Implications for insulin resistance and diabetes mellitus.  N Engl Med J. 1999;  341 248-257
  • 33 Waki A, Kato H, Yano R, Sadato N, Yokohama A, Ishii Y, Yonekura Y, Fujibayashi Y. The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro.  Nucl Med Biol. 1998;  25 593-597
  • 34 Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I, West C. Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix.  Clin Cancer Res. 2001;  7 928-934
  • 35 Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, Fukuchi M, Manda R, Ojima H, Tsukada K, Kuwano H. Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated with tumor aggressiveness.  Anticancer Res. 2002;  22 2635-2639
  • 36 Kurokawa T, Yoshida Y, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y, Yonekura Y, Kotsuji F. Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary.  Int J Cancer. 2004;  109 926-932
  • 37 Tahara T, Ichiya Y, Kuwabara Y, Otsuka M, Miyake Y, Gunasekera R, Masuda K. High [18F]-fluorodeoxyglucose uptake in abdominal abscesses: a PET study.  J Comput Assist Tomogr. 1989;  13 829-831
  • 38 Sasaki M, Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Fukumura T, Gunasekera R, Masuda K. Ringlike uptake of [18F]FDG in brain abscess: a PET study.  J Comput Assist Tomogr. 1990;  14 486-487
  • 39 Ichiya Y, Kuwabara Y, Sasaki M, Yoshida T, Akashi Y, Murayama S, Nakamura K, Fukumura T, Masuda K. FDG-PET in infectious lesions: The detection and assessment of lesion activity.  Ann Nucl Med. 1996;  10 185-191
  • 40 Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, Sato N, Konishi J. Increased (18)F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation.  J Nucl Med. 2002;  43 658-663
  • 41 Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, Hosokawa M, Kohanawa M, Tamaki N. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models.  J Nucl Med. 2001;  42 1551-1555
  • 42 Waldvogel F A, Medoff G, Swartz M N. Osteomyelitis: A review of clinical features, therapeutic considerations and unusual aspects.  N Engl Med J. 1970;  282 593-597
  • 43 Lew D P, Waldvogel F A. Current concepts: Osteomyelitis.  N Engl Med J. 1997;  336 999-1007
  • 44 Hahn K, Fischer S. Zum Stellenwert der Knochenszintigraphie in der Pädiatrie.  Nuklearmediziner. 2002;  25 214-224
  • 45 Connolly L P, Connolly S A, Drubach L A, Jaramillo D, Treves S T. Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the era of MRI.  JNucl Med. 2002;  43 1310-1316
  • 46 Aigner R M, Fueger G F, Vejda M. Follow-up of osteomyelitis of infants with systemic serum parameters and bone scintigraphy.  Nuklearmedizin. 1996;  35 116-121
  • 47 Becker W. Differentialindikation für verschiedene radioaktive Arzneimittel bei unterschiedlichen entzündlichen Erkrankungen.  Nuklearmedizin. 1999;  38 243
  • 48 Jones-Jackson L, Walker R, Purnell G, McLaren S G, Skinner R A, Thomas J R, Suva L J, Anaissie E, Miceli M, Nelson C L, Ferris E J, Smeltzer M S. Early detection of bone infection and differentiation from post-surgical inflammation using 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography (FDG-PET) in an animal model.  J Orthop Res. 2005;  23 1484-1489
  • 49 Mader J T, Shirtliff M, Calhoun J H. Staging and staging applications in osteomyelitis.  Clin Infect Dis. 1997;  25 1303-1309
  • 50 Termaat M F, Raijmakers P GHM, Scholten H J, Bakker F C, Patka P, Haarman H JTM. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis.  J Bone Joint Surg [Am]. 2005;  87 2464-2471
  • 51 Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske S N. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings.  Radiology. 1998;  206 749-754
  • 52 Zhuang H, Duarte P S, Pourdehand M, Shnier D, Alavi A. Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging.  Clin Nucl Med. 2000;  25 281-284
  • 53 Sahlmann C O, Siefker U, Lehmann K, Meller J. Dual time point 2-[18F]fluoro-2′-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis.  Nucl Med Commun. 2004;  25 819-823
  • 54 Papós M, Barát F, Nárai G, Dillmann J, Láng J, Csernay L. 99mTc HMPAO leukocyte and 99mTc nanocolloid scintigraphy in posttraumatic bone infection.  Clin Nucl Med. 1998;  23 423-428
  • 55 Buhl T, Stentzer K, Hede A, Kjaer A, Hesse B. Bone infection in patients suspected of complicating osteomyelitis: the diagnostic value of dual isotope bone-granulocyte scintigraphy.  Clin Physiol Funct Imaging. 2005;  25 20-26
  • 56 Molina-Murphy I L, Palmer E L, Scott J A, Prince M R, Strauss H W, Rubin R H, Fischman A J. Polyclonal, nonspecific 111In-IgG scintigraphy in the evaluation of complicated osteomyelitis and septic arthritis.  Q J Nucl Med. 1999;  43 29-37
  • 57 Hakim S G, Bruecker C W, Jacobsen H C, Hermes D, Lauer I, Eckerle S, Froehlich A, Sieg P. The value of FDG-PET and bone scintigraphy with SPECT in the primary diagnosis and follow-up of patients with chronic osteomyelitis of the mandible.  Int J Oral Max Surg. 2006;  35 809-816
  • 58 Körner T, Kreusch T, Bohuslavizki K H, Brinkmann G, Köhnlein S. Magnetresonanztomographie (MRT) vs. 3-Phasen-Knochenszintigraphie bei der Diagnostik und Verlaufskontrolle der Unterkieferosteomyelitis. Magnetic resonance imaging vs. three-dimensional scintigraphy in the diagnosis and monitoring of mandibular osteomyelitis.  Mund Kiefer Gesichtschir. 1997;  1 3324-327
  • 59 Melkun E T, Lewis Jr V L. Evaluation of (111) indium-labeled autologous leukocyte scintigraphy for the diagnosis of chronic osteomyelitis in patients with grade IV pressure ulcers, as compared with a standard diagnostic protocol.  Ann Plas Surg. 2005;  54 633-666
  • 60 Poirier J Y, Garin E, Derrien C, Devillers A, Moisan A, Bourguet P, Maugendre D. Diagnosis of osteomyelitis in the diabetic foot with a 99mTc-HMPAO leucocyte scintigraphy combined with a 99mTc-MDP bone scintigraphy.  Diabetes Metab. 2002;  28 485-490
  • 61 Lipman B T, Collier B D, Carrera G F, Timins M E, Erickson S J, Johnson J E, Mitchell J R, Hoffmann R G, Finger W A, Krasnow A Z, Hellman R S. Detection of osteomyelitis in the neuropathic foot: nuclear medicine, MRI and conventional radiography.  Clin Nucl Med. 1998;  23 77-82
  • 62 Rubello D, Casara D, Maran A, Avogaro A, Tiengo A, Muzzio P C. Role of anti-granulocyte Fab′ fragment antibody scintigraphy (LeukoScan) in evaluating bone infection: acquisition protocol, interpretation criteria and clinical results.  Nucl Med Commun. 2004;  25 39-47
  • 63 Dutta P, Bhansali A, Mittal B R, Singh B, Masoodi S R. Instant 99mTc-ciprofloxacin scintigraphy for the diagnosis of osteomyelitis in the diabetic foot.  Foot Ankle Int. 2006;  27 716-722
  • 64 Remedios D, Valabhji J, Oelbaum R, Sharp P, Mitchell R. 99mTc-nanocolloid scintigraphy for assessing osteomyelitis in diabetic neuropathic feet.  Clin Radiol. 1998;  53 120-125
  • 65 Sapico F L, Montgomerie J Z. Pyogenic vertebral osteomyelitis: report of nine cases and review of the literature.  Rev Infect Dis. 1979;  1 754-776
  • 66 Ozuna R M, Delamarter R B. Pyogenic vertebral osteomyelitis and postsurgical disc space infections.  Orthop Clin North Am. 1996;  27 87-94
  • 67 Mader J T, Shirtliff M E, Bergquist S C, Calhoun J. Antimicrobial treatment of chronic osteomyelitis.  Clin Orthop Relat Res. 1999;  360 47-65
  • 68 Gratz S, Dörner J, Oestmann J W, Opitz M, Behr T, Meller J, Grabbe E, Becker W. 67Ga-citrate and 99Tcm-MDP for estimating the severity of vertebral osteomyelitis.  Nucl Med Commun. 2000;  21 111-120
  • 69 Love C, Patel M, Lonner B S, Tomas M B, Palestro C J. Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging.  Clin Nucl Med. 2000;  25 963-977
  • 70 Modic M T, Feiglin D H, Piraino D W, Boumphrey F, Weinstein M A, Duchesneau P M, Rehm S. Vertebral osteomyelitis: assessment using MR.  Radiology. 1985;  157 157-166
  • 71 Adatepe M H, Powell O M, Isaacs G H, Nichols K, Cefola R. Hematogenous pyogenic vertebral osteomyelitis: diagnostic value of radionuclide bone imaging.  J Nucl Med. 1986;  27 1680-1685
  • 72 Palestro C J, Kim C K, Swyer A J, Vallabhajosula S, Goldsmith S J. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy.  J Nucl Med. 1991;  32 1861-1865
  • 73 Tyrell P N, Cassar-Pullicino V N, McCall I W. Spinal infection.  Eur Radiol. 1999;  9 1066-1077
  • 74 Lin W Y, Tsai S C, Chao T H, Wang S J. Uptake of gallium-67 citrate in clean surgical incisions after colorectal surgery.  Eur J Nucl Med. 2001;  28 369-372
  • 75 Gratz S, Braun H G, Behr T M, Meller J, Herrmann A, Conrad M, Rathmann D, Bertagnoli R, Willert H G, Becker W. Photopenia in chronic vertebral osteomyelitis with technetium-99m-antigranulocyte antibody (BW 250/ 183).  J Nucl Med. 1997;  38 211-2216
  • 76 Gratz S, Behr T, Schmitt H A, Wüstner M, Morguet A, Meller J, Becker W. 99mTc labeled antigranulocyte monoclonal antibody Fab′ fragments (Leukoscan®) for diagnostic imaging of bone and soft tissue infections.  J Nucl Med. 1998;  39 34
  • 77 De Winter F, Gemmel F, Van Laere K, De Winter O, Poffijn B, Dierckx R A, Van de Wiele C. 99mTc-Ciprofloxacin planar and tomographic imaging for the diagnosis of infection in the postoperative spine: experience in 48 patients.  Eur J Nucl Med Mol Imaging. 2004;  31 233-239
  • 78 Lazzeri E, Pauwels E KJ, Erba P A, Volterrani D, Manca M, Bodei L, Trippi D, Bottoni A, Cristofani R, Consoli V, Palestro C J, Mariani G. Clinical feasibility of two-step streptavidin/(111)In-biotin scintigraphy in patients with suspected vertebral osteomyelitis.  Eur J Nucl Med Mol Imaging. 2004;  31 1505-1511
  • 79 Stumpe K DM, Dazzi H, Schaffner A, Schulthess G K von. Infection imaging using whole-body FDG-PET.  Eur J Nucl Med. 2000;  27 822-832
  • 80 Gratz S, Dörner J, Fischer U, Behr T M, Behe M, Altenvoerde G, Meller J, Grabbe E, Becker W. 18F-FDG hybrid PET in patients with suspected spondylitis.  Eur J Nucl Med Mol Imaging. 2002;  29 516-524
  • 81 Stumpe K D, Zanetti M, Weishaupt D, Hodler J, Boos N, Schulthess G K von. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging.  Am J Roentgenol. 2002;  179 1151-1157
  • 82 De Winter F, Gemmel F, Van De Wiele C, Poffijn B, Uyttendaele D, Dierckx R. 18-Fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine.  Spine. 2003;  28 1314-1319
  • 83 Schiesser M, Stumpe K D, Trentz O, Kossmann T, Schulthess G K von. Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results.  Radiology. 2003;  226 391-398
  • 84 Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue.  J Nucl Med. 1995;  36 1301-1316
  • 85 De Winter F, Huysse W, De Paepe P, Lambert B, Poffyn B, Dierck R. High F-18 FDG uptake in a paraspinal textiloma.  Clin Nucl Med. 2002;  27 132-133
  • 86 De Winter F, Van De Wiele C, De Clercq D, Vogelaers D, De Bondt P, Dierckx R A. Aseptic loosening of a knee prosthesis as imaged on FDG positron emission tomography.  Clin Nucl Med. 2000;  25 923
  • 87 Van Acker F, Nuyts J, Maes A, Vanquickenborne B, Stuyck J, Bellemans J, Vleugels S, Bormans G, Mortelmans L. FDG-PET, 99mTc-HMPAO white blood cell SPET and bone scintigraphy in the evaluation of painful total knee arthroplasties.  Eur J Nucl Med. 2001;  28 1496-1504
  • 88 Love C, Marwin S E, Tomas M B, Krauss E S, Tronco G G, Bhargava K K, Nichols K J, Palestro C J. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging.  J Nucl Med. 2004;  45 1864-1871
  • 89 Kälicke T, Schmitz A, Risse J H, Arens S, Keller E, Hansis M, Schmitt O, Biersack H J, Grünwald F. Fluorine-18 fluorodeoxyglucose positron emission tomography in infectious bone diseases: results of histologically confirmed cases.  Eur J Nucl Med. 2000;  27 524-528
  • 90 Schmitz A, Risse H J, Kälicke T, Grünwald F, Schmitt O. FDG-PET zur Diagnostik und Verlaufskontrolle entzündlicher Prozesse: Erste Ergebnisse aus orthopädischer Sicht; FDG-PET for diagnosis and follow-up of inflammatory processes: First results from an orthopedic view.  Z Orthop Ihre Grenzgeb. 2000;  138 407-412
  • 91 Zhuang H, Sam J W, Chacko T K, Duarte P S, Hickeson M, Feng Q, Nakhoda K Z, Guan L, Reich P, Altimari S M, Alavi A. Rapid normalization of osseous FDG uptake following traumatic or surgical fractures.  Eur J Nucl Med Mol Imaging. 2003;  30 1096-1103
  • 92 Stádler P, Bìlohlávek O, Spacek M, Michálek P. Diagnosis of vascular prosthesis infection with FDG-PET/CT.  J Vasc Surg. 2004;  40 1246-1247

PD Dr. (Univ. Zagreb) V. Ivančević

Nuklearmedizinische Gemeinschaftspraxis im AKH

Siemensplatz 4

29223 Celle

Phone: +49/51 41/72 16 01

Fax: +49/51 41/72 16 49

Email: info@nuklearmedizin-am-akh.de

    >