Informationen aus Orthodontie & Kieferorthopädie 2007; 39(1): 1-5
DOI: 10.1055/s-2007-960558
Originalarbeit

© Georg Thieme Verlag

Ein systematischer Überblick über Gleitwiderstände an kieferorthopädischen Apparaturen

Systemic Approach to the Resistance to Sliding of Orthodontic AppliancesG. A. Thorstenson
Further Information

Publication History

Publication Date:
13 March 2007 (online)

Zusammenfassung

Neben dem Gleitwiderstand spielen bei der Auswahl der jeweiligen kieferorthopädischen Apparatur noch andere Faktoren, wie etwa die geplante Kraftstärke, ästhetische Überlegungen oder der Tragekomfort des Gerätes eine Rolle. Jeder von uns legt bei einem Fahrzeug Wert auf unterschiedliche Merkmale und in ähnlicher Weise kann es nicht nur eine einzige „ideale” Apparatur geben. Dieser Artikel soll dazu beitragen, einzelne Aspekte, wie das Gleitverhalten der verwendeten Brackets, Bogendrähte und Ligaturverfahren richtig zu gewichten und somit Behandlungsmaßnahmen entsprechend zu optimieren.

Abstract

Factors other than resistance to sliding (for example, desired force level, aesthetics, or patient comfort) should also influence the choice of appliance. Much like we have our own preferences in a car, we may not agree on a single “ideal” appliance. This article shall contribute to a better understanding of the frictional behavior of brackets, archwires, and ligation methods and help to optimize treatment.

Literatur

  • 1 Haney P. Rubber Friction. Sports Car 2004; January
  • 2 Frank C A, Nikolai R J. A comparative study of frictional resistances between orthodontic bracket and arch wire.  Am J Orthod. 1980;  78 593-609
  • 3 Kusy R P, Whitley J Q. Friction between different wire-bracket configurations and materials.  Semin Orthod. 1997;  3 166-177
  • 4 Jastrzebski Z D. The Nature of Properties of Engineering Materials. John Wiley & Sons Inc., New York 1976
  • 5 Persson B NJ. Sliding Friction: Physical Principles and Applications. Springer, New York, Berlin 1998
  • 6 Kusy R P, Whitley J Q. Effects of surface roughness on the coefficients of friction in model orthodontic systems.  J Biomech. 1990;  23 913-925
  • 7 Kusy R P, Whitley J Q. Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding.  Eur J Orthod. 1999;  21 199-208
  • 8 Kusy R P, Whitley J Q. Resistance to sliding of orthodontic appliances in the dry and wet states: influence of archwire alloy, interbracket distance, and bracket engagement.  J Biomed Mater Res. 2000;  52 797-811
  • 9 Articolo L C, Kusy K, Saunders C R, Kusy R P. Influence of ceramic and stainless steel brackets on the notching of archwires during clinical treatment.  Eur J Orthod. 2000;  22 409-425
  • 10 Thorstenson G A, Kusy R P. Influence of stainless steel inserts on the resistance to sliding of esthetic brackets with second-order angulation in the dry and wet states.  Angle Orthod. 2003;  73 167-175
  • 11 McKamey R P, Kusy R P. Stress-relaxing composite ligature wires: formulations and characteristics.  Angle Orthod. 1999;  69 441-449
  • 12 Thorstenson G A, Kusy R P. Effects of ligation type and method on the resistance to sliding of novel orthodontic brackets with second-order angulation in the dry and wet states.  Angle Orthod. 2003;  73 418-430
  • 13 Iwasaki L R, Beatty M W, Randall C J, Nickel J C. Clinical ligation forces and intraoral friction during sliding on a stainless steel archwire.  Am J Orthod Dentofacial Orthop. 2003;  123 408-415
  • 14 Meling T R, Odegaard J, Holthe K, Segner D. The effect of friction on the bending stiffness of orthodontic beams: a theoretical and in vitro study.  Am J Orthod Dentofacial Orthop. 1997;  112 41-49
  • 15 Kusy R P. Orthodontic biomechanics: vistas from the top of a new century.  Am J Orthod Dentofacial Orthop. 2000;  117 589-591
  • 16 Schumacher H A, Bourauel C, Drescher D. The effect of the ligature on the friction between bracket and arch.  Fortschr Kieferorthop. 1990;  51 106-116
  • 17 Schumacher H A, Bourauel C, Drescher D. The influence of bracket design on frictional losses in the bracket / arch wire system.  J Orofac Orthop. 1999;  60 335-347
  • 18 Tidy D C. Frictional forces in fixed appliances.  Am J Orthod Dentofacial Orthop. 1989;  96 249-254
  • 19 Edwards G D, Davies E H, Jones S P. The ex vivo effect of ligation technique on the static frictional resistance of stainless steel brackets and archwires.  Br J Orthod. 1995;  22 145-153
  • 20 Zufall S W, Kusy R P. Sliding mechanics of coated composite wires and the development of an engineering model for binding.  Angle Orthod. 2000;  70 34-47
  • 21 Stevenson J S, Kusy R P. Force application and decay characteristics of untreated and treated polyurethane elastomeric chains.  Angle Orthod. 1994;  64 455-467
  • 22 Dowling P A, Jones W B, Lagerstrom L, Sandham J A. An investigation into the behavioural characteristics of orthodontic elastomeric modules.  Br J Orthod. 1998;  25 197-202
  • 23 Baccetti T, Franchi L. Friction produced by types of elastomeric ligatures in treatment mechanics with the preadjusted appliance.  Angle Orthod. 2006;  76 211-216
  • 24 Chimenti C, Franchi L, Di Giuseppe M G, Lucci M. Friction of orthodontic elastomeric ligatures with different dimensions.  Angle Orthod. 2005;  75 421-425
  • 25 Khambay B, Millet D, McHugh S. Archwire seating forces produced by different ligation methods and their effect on frictional resistance.  Eur J Orthod. 2005;  27 302-308
  • 26 Damon D H. The rationale, evolution, and clinical application of the self-ligating bracket.  Clin Orthod Res. 1998;  1 52-61
  • 27 Voudouris J C. Interactive edgewise mechanisms: form and function comparison with conventional edgewise brackets.  Am J Orthod Dentofacial Orthop. 1997;  111 119-140
  • 28 Thorstenson G A, Kusy R P. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state.  Am J Orthod Dentofacial Orthop. 2002;  122 295-305
  • 29 Dowling N E. Mechanical Behavior of Materials. Prentice Hall, Englewood Cliffs NJ 1993
  • 30 Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behavior of a Ti6Al4V alloy.  Wear. 2006;  261 1002-1011
  • 31 Park J H, Lee Y K, Lim B S, Kim C W. Frictional forces between lingual brackets and archwires measured by a friction tester.  Angle Orthod. 2004;  74 816-824
  • 32 Moore J C, Waters N E. Factors affecting tooth movement in sliding mechanics.  Eur J Orthod. 1993;  15 235-241
  • 33 Thorstenson G A, Kusy R P. Resistance to sliding of orthodontic brackets with bumps in the slot floors and walls: effects of second-order angulation.  Dent Mater. 2004;  20 881-892
  • 34 Hansen J D, Kusy R P, Saunders C R. Archwire damage from ceramic brackets via notching.  Orthod Rev. 1997;  11 27-31
  • 35 Kapila S, Sachdeva R. Mechanical properties and clinical applications of orthodontic wires.  Am J Orthod Dentofacial Orthop. 1989;  96 100-109
  • 36 Meling T R, Odegaard J. The effect of short-term temperature changes on superelastic nickel-titanium archwires activated in orthodontic bending.  Am J Orthod Dentofacial Orthop. 2001;  119 263-273
  • 37 Kusy R P, Whitley J Q. Influence of fluid media on the frictional coefficients in orthodontic sliding.  Semin Orthod. 2003;  9 281-289
  • 38 Kusy R P, Schafer D L. Effect of salivary viscosity on frictional coefficients of orthodontic archwire / bracket couples.  J Mater Sci Mater Med. 1995;  6 390-395
  • 39 Vaughan J L, Duncanson MG J r, Nanda R S, Currier G F. Relative kinetic frictional forces between sintered stainless steel brackets and orthodontic wires.  Am J Orthod Dentofacial Orthop. 1995;  107 20-27
  • 40 Kusy R P, Whitley J Q, Ambrose W W, Newman J G. Evaluation of titanium brackets for orthodontic treatment: Part I. The passive configuration.  Am J Orthod Dentofacial Orthop. 1998;  114 558-572
  • 41 Kusy R P, O'Grady P W. Evaluation of titanium brackets for orthodontic treatment: Part II. The active configuration.  Am J Orthod Dentofacial Orthop. 2000;  118 675-684
  • 42 Drescher D, Bourauel C, Schumacher H A. Frictional forces between bracket and arch wire.  Am J Orthod Dentofacial Orthop. 1989;  96 397-404
  • 43 Moore M M, Harrington E, Rock W P. Factors affecting friction in the pre-adjusted appliance.  Eur J Orthod. 2004;  26 579-583
  • 44 Michelberger D J, Eadie R L, Faulkner M G, Glover K E, Prasad N G, Major P W. The friction and wear patterns of orthodontic brackets and archwires in the dry state.  Am J Orthod Dentofacial Orthop. 2000;  118 662-674
  • 45 Kapur R, Sinha P K, Nanda R S. Frictional resistance in orthodontic brackets with repeated use.  Am J Orthod Dentofacial Orthop. 1999;  116 400-404
  • 46 Saunders C R, Kusy R P. Surface topography and frictional characteristics of ceramic brackets.  Am J Orthod Dentofacial Orthop. 1994;  106 76-87
  • 47 Tanne K, Matsubara S, Hotei Y, Sakuda M, Yoshida M. Frictional forces and surface topography of a new ceramic bracket.  Am J Orthod Dentofacial Orthop. 1994;  106 273-278
  • 48 Tselepis M, Brockhurst P, West V C. The dynamic frictional resistance between orthodontic brackets and arch wires.  Am J Orthod Dentofacial Orthop. 1994;  106 131-138
  • 49 Bazakidou E, Nanda R S, Duncanson Jr  M G, Sinha P. Evaluation of frictional resistance in esthetic brackets.  Am J Orthod Dentofacial Orthop. 1997;  112 138-144
  • 50 Harradine N W, Birnie D J. The clinical use of Activa self-ligating brackets.  Am J Orthod Dentofacial Orthop. 1996;  109 319-328
  • 51 Kusy R P. Influence of force systems on archwire-bracket combinations.  Am J Orthod Dentofacial Orthop. 2005;  127 333-342

G. A. Thorstenson

3M-Unitek · Senior Product Development Engineer

2724 South Peck Road

Monrovia, CA 91016

USA

Phone: 0 01/6 26/5 74 44 94

Fax: 0 01/6 26/5 74 48 76

Email: gathorstenson@mmm.com

    >