Abstract
In human skin both resident and transiently residing cells are part of the extra-
or non-neuronal cholinergic system, creating a highly complex and interconnected cosmos
in which acetylcholine (ACh) and choline are the natural ligands of nicotinic and
muscarinic receptors with regulatory function in both physiology and pathophysiology.
ACh is produced in keratinocytes, endothelial cells and most notably in immune competent
cells invading the skin at sites of inflammation. The cholinergic system is involved
in basic functions of the skin through autocrine, paracrine, and endocrine mechanisms,
like keratinocyte proliferation, differentiation, adhesion and migration, epidermal
barrier formation, pigment-, sweat- and sebum production, blood circulation, angiogenesis,
and a variety of immune reactions. The pathophysiological consequences of this complex
cholinergic “concert” are only beginning to be understood. The present review aims
at providing insight into basic mechanisms of this highly complex system.
Keywords
acetylcholine - choline - endocrine - immune system - angiogenesis
References
- 1
Grando SA.
Biological functions of keratinocyte cholinergic receptors.
J Invest Dermatol Symp Proc.
1997;
2
41-48
- 2
Zouboulis CC.
Human skin: an independent peripheral endocrine organ.
Horm Res.
2000;
54
230-242
- 3
Schallreuter KU.
Epidermal adrenergic signal transduction as part of the neuronal network in the human
epidermis.
J Investig Dermatol Symp Proc.
1997;
2
37-40
- 4
Kurzen H, Schallreuter KU.
Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors.
Exp Dermatol.
2004;
13
((Suppl 4))
27-30
- 5
Conti-Tronconi BM, McLane KE, Raftery MA, Grando SA, Protti MP.
The nicotinic acetylcholine receptor: structure and autoimmune pathology.
Crit Rev Biochem Mol Biol.
1994;
29
69-123
- 6
Mark MR, Domino EF, Han SS, Ortiz A, Mathews BN, Tait SK.
Effect of parasympathetic denervation on acetylcholine levels in the rat parotid gland.
Is there an extraneuronal pool of acetylcholine?.
Life Sci.
1983;
33
1191-1197
- 7
Kawashima K, Oohata H, Suzuki T, Fujimoto K.
Extraneuronal localization of acetylcholine and its release upon nicotine stimulation.
Neurosci Lett.
1989;
104
336-339
- 8
Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K.
Evolutional study on acetylcholine expression.
Life Sci.
2003;
72
1745-1756
- 9
Kurzen H, Berger H, Jäger C, Hartschuh W, Näher H, Gratchev A, Goerdt S, Deichmann M.
Phenotypical and molecular profiling of the extraneuronal cholinergic system of the
skin.
J Invest Dermatol.
2004;
123
937-949
- 10
Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ.
The non-neuronal cholinergic system in humans: expression, function and pathophysiology.
Life Sci.
2003;
72
2055-2061
- 11
van Koppen CJ, Kaiser B.
Regulation of muscarinic acetylcholine receptor signaling.
Pharmacol Ther.
2003;
98
197-220
- 12
Millar N.
Assembly and subunit diversity of nicotinic acetylcholine receptors.
Biochem Soc Trans.
2003;
31
869-874
- 13
Sgard F, Charpentier E, Bertrand S, Walker N, Caput D, Graham D, Bertrand D, Besnard F.
A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit.
Mol Pharmacol.
2001;
61
150-159
- 14
Shi H, Wang H, Lu Y, Yang B, Wang Z.
Choline modulates cardiac membrane repolarization by activating an M3 muscarinic receptor
and its coupled K+ channel.
J Membr Biol.
1999;
169
55-64
- 15
Zwart R, Vijverberg HP.
Potentiation and inhibition of neuronal nicotinic receptors by atropine: competitive
and noncompetitive effects.
Mol Pharmacol.
1997;
52
886-895
- 16
Parker JC, Sarkar D, Quick MW, Lester RA.
Interactions of atropine with heterologously expressed and native alpha 3 subunit-containing
nicotinic acetylcholine receptors.
Br J Pharmacol.
2003;
138
801-810
- 17
Elgoyhen AB, Johnson D, Boulter J, Vetter DE, Heinemann S.
α9: an acetylcholine receptor with novel pharmacological properties expressed in rat
cochlear hair cells.
Cell.
1994;
79
705-715
- 18
Grando SA, Zelickson BD, Kist DA, Weinshenker D, Bigliardi PL, Wendelschafer-Crabb G,
Kennedy WR, Dahl MV.
Keratinocyte muscarinic acetylcholine receptors: immunolocalization and partial characterization.
J Invest Dermatol.
1995;
104
95-100
- 19
Verbitsky M, Rothlin CV, Katz E, Elgoyhen AB.
Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor.
Neuropharmacology.
2000;
39
2515-2524
- 20
Arredondo J, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Kummer W, Lips K,
Vetter DE, Grando SA.
Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous
epithelium.
J Cell Biol.
2002;
159
325-336
- 21
Gharagozloo P, Lazareno S, Popham A, Birdsall NJ.
Allosteric interactions of quaternary strychnine and brucine derivatives with muscarinic
acetylcholine receptors.
J Med Chem.
1999;
42
438-445
- 22
Jakublik J, Backova L, El-Fakahany EE, Tucek S.
Positive cooperativity of acetylcholine and other agonists with allosteric ligands
on muscarinic acetylcholine receptors.
Mol Pharmacol.
1997;
52
172-179
- 23
Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M.
Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine
at muscarinic receptors: functional studies.
Mol Pharmacol.
1999;
55
778-786
- 24
Chernyavsky AI, Arredondo J, Marubio LM, Grando SA.
Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct
nicotinic receptor subtypes.
J Cell Sci.
2004;
117
5665-5679
- 25
Chernyavsky AI, Arredondo J, Karlsson E, Wessler I, Grando SA.
The RAS/RAF-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic
regulation of keratinocyte directional migration.
J Biol Chem.
2005;
280
39220-39228
- 26
Blusztajn JK.
Choline, a vital amine.
Science.
1998;
281
((5378))
794-795
- 27
Ilcol YO, Ozbek R, Hamurtekin E, Ulus IH.
Choline status in newborns, infants, children, breast-feeding women, breast-fed infants
and human breast milk.
J Nutr Biochem.
2005;
16
489-499
- 28
Mohs RC, Davis KL.
Choline chloride effects on memory: correlation with the effects of physostigmine.
Psychiatry Res.
1980;
2
149-156
- 29
da Costa KA, Badea M, Fischer LM, Zeisel SH.
Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies
in C2C12 mouse myoblasts.
Am J Clin Nutr.
2004;
80
163-170
- 30
Holmes-McNary MQ, Baldwin Jr AS, Zeisel SH.
Opposing regulation of choline deficiency-induced apoptosis by p53 and nuclear factor
kappaB.
J Biol Chem.
2001;
276
41197-41204
- 31
Danne O, Mockel M, Lueders C, Mugge C, Zschunke GA, Lufft H, Muller C, Frei U.
Prognostic implications of elevated whole blood choline levels in acute coronary syndromes.
Am J Cardiol.
2003;
91
1060-1067
- 32
Grando SA, Kist DA, Qi M, Dahl MV.
Human keratinocytes synthesize, secrete, and degrade acetylcholine.
J Invest Dermatol.
1993;
101
32-36
- 33
Nguyen VT, Ndoye A, Hall LL, Zia S, Arredondo J, Chernyavsky AI, Kist DA, Zelickson BD,
Lawry MA, Grando SA.
Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant
upon secretagogue action of acetylcholine.
J Cell Sci.
2001;
114
1189-1204
- 34
Lips KS, Pfeil U, Kummer W.
Coexpression of α9 and α10 nicotinic acetylcholine receptor subunits in rat dorsal
root ganglion neurons.
Neuroscience.
2002;
115
1-5
- 35
Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J.
alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular
and cochlear mechanosensory hair cells.
Proc Natl Acad Sci USA.
2001;
98
3501-3506
- 36
Kurzen H, Berger H, Jager C, Hartschuh W, Maas-Szabowski N.
Alpha 9 acetylcholine receptors are essential for epidermal differentiation.
Exp Dermatol.
2005;
14
155
- 37
Gordon PR, Gelman LK, Gilchrest BA.
Demonstration of a choline requirement for optimal keratinocyte growth in a defined
culture medium.
J Nutr.
1988;
118
1487-1494
- 38
Nguyen VT, Chernyavsky AI, Arredondo J. et al .
Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine
receptor subtypes.
Exp Cell Res.
2004;
294
534-549
- 39
Zouboulis CC, Boschnakow A.
Chronological ageing and photoageing of the human sebaceous gland.
Clin Exp Dermatol.
2001;
26
600-607
- 40
Schafer T, Nienhaus A, Vieluf D, Berger J, Ring J.
Epidemiology of acne in the general population: the risk of smoking.
Br J Dermatol.
2001;
145
100-104
- 41
Tretyn A, Kendrick RE.
Acetylcholine in plants presence metabolism and mechanism of action.
Botan Rev.
1991;
57
33-73
- 42
Gupta R, Saxena RK, Goel S.
Photoinduced sporulation in Trichoderma harzianum: an experimental approach to primary
events.
World J Microbiol Biotechnol.
1997;
13
249-250
- 43
Buchli R, Ndoye A, Arredondo J, Webber RJ, Grando SA.
Identification and characterization of muscarinic acetylcholine receptor subtypes
expressed in human skin melanocytes.
Mol Cell Biochem.
2001;
228
57-72
- 44
Zhao H, Boissy RE, Nordlung JJ.
Down-regulation of human melanogenesis by acetylcholine in culture.
J Invest Dermatol.
1996;
106
910
- 45
Moller H, Lerner AB.
Melanocyte stimulating hormone inhibition by acetylcholine and noradrenaline in the
frog skin bioassay.
Acta Endocrinol.
1966;
51
149-160
- 46
Wallstrom M, Sand L, Nilsson F, Hirsch JM.
The long-term effect of nicotine on the oral mucosa.
Addiction.
1999;
94
417-423
- 47
Gillbro JM, Marles LK, Hibberts NA, Schallreuter KU.
Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation
in human epidermal melanocytes.
J Invest Dermatol.
2004;
123
346-353
- 48
Warren JB.
Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet
light.
FASEB J.
1994;
8
247-251
- 49
Lewis T, Harris KE, Grant RT.
Observations relating to the influence of the cutaneous nerves on various reactions
of the cutaneous vessels.
Heart.
1927;
14
1-15
- 50
Kang-Rotondo CH, Major S, Chiang TM, Myers LK, Kang ES.
Upregulation of nitric oxide synthase in cultured human keratinocytes after ultraviolet
B and bradykinin.
Photoderm Photoimmunol Photomed.
1996;
12
57-65
- 51
Romero-Graillet C, Aberdam E, Clement M, Ortonne JP, Ballotti R.
Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis.
J Clin Invest.
1997;
99
635-642
- 52
Sawada Y, Sakamaki T, Nakamura T, Sato K, Ono Z, Murata K.
Release of nitric oxide in response to acetylcholine is unaltered in spontaneously
hypertensive rats.
J Hypertens.
1994;
12
745-750
- 53
Iyengar B.
Modulation of melanocytic activity by acetylcholine.
Acta Anat.
1989;
136
139-141
- 54
Chanco-Turner ML, Lerner AB.
Physiologic changes in vitiligo.
Arch Dermatol.
1965;
91
390-396
- 55
Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM.
Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo.
Biochem Biophys Res Commun.
2004;
315
502-508
- 56
Magnus IA, Thompson RHS.
Cholinesterase activity of human skin.
Br J Dermatol.
1954;
66
163-173
- 57
Buchli R, Ndoye A, Rodriguez JG, Zia S, Webber RJ, Grando SA.
Human skin fibroblasts express m2, m4, and m5 subtypes of muscarinic acetylcholine
receptors.
J Cell Biochem.
1999;
74
264-277
- 58
Raposo G, Dunia I, Marullo S, Andre C, Guillet JG, Strosberg AD, Benedetti EL, Hoebeke J.
Redistribution of muscarinic acetylcholine receptors on human fibroblasts induced
by regulatory ligands.
Biology of the Cell.
1987;
60
117-123
- 59
Vestling M, Cowburn RF, Venizelos N, Lannfelt L, Winblad B, Adem A.
Characterization of muscarinic acetylcholine receptors in cultured adult skin fibroblasts:
effects of the Swedish Alzheimer's disease APP 670/671 mutation on binding levels.
J Neur Transm (Parkinson's Disease and Dementia Section).
1995;
10
1-10
- 60
Chew SJ, Lopez JG, Wilson R, Beuerman RW.
Muscarinic antagonists inhibit the proliferation and EGF receptor expression of human
ocular and NIH-3T3 fibroblasts.
Soc Neurosci Abstr.
1992;
18
927
- 61
Peacock ME, Sutherland DE, Schuster GS, Brennan WA, O'Neal RB, Strong SL, Van Dyke TE.
The effect of nicotine on reproduction and attachment of human gingival fibroblasts
in vitro.
J Periodontol.
1993;
64
658-665
- 62
Arredondo J, Hall LH, Ndoye A, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A,
Beaudet AL, Grando SA.
Central role of fibroblast α3 nicotinic acetylcholine receptor in mediating cutaneous
effects of nicotine.
Lab Invest.
2003;
83
207-225
- 63
Tipton DA, Dabbous MK.
Effects of nicotine on proliferation and extracellular matrix production of human
gingival fibroblasts in vitro.
J Periodontol.
1995;
66
1056-1064
- 64
Arredondo J, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Vetter DE, Grando SA.
Functional role of α7 nicotinic receptor in physiological control of cutaneous homeostasis.
Life Sci.
2003;
72
2063-2067
- 65
Frances C.
Smoker's wrinkles: epidemiological and pathogenic considerations.
Clin Dermatol.
1998;
16
565-570
- 66
Conti-Fine BM, Navaneetham D, Lei S, Maus AD.
Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity?.
Eur J Pharmacol.
2000;
393
279-294
- 67
Raitio A, Vahakangas K, Haapasaari K-M, Risteli J, Oikarinen A.
Smoking downregulates collagen synthesis in skin.
J Invest Dermatol.
1999;
113
452
- 68
Carty CS, Soloway PD, Kayastha S, Bauer J, Marsan B, Ricotta JJ, Dryjski M.
Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect
expression of matrix metalloproteinases in cultured human smooth muscle cells.
J Vasc Surg.
1996;
24
27-35
- 69
Chamson A, Frey J, Hivert M.
Effects of tobacco smoke extracts on collagen biosynthesis by fibroblast cell cultures.
J Toxicol Environ Health.
1982;
9
921-932
- 70
Yin L, Morita A, Tsuji T.
Alterations of extracellular matrix induced by tobacco smoke extract.
Arch Dermatol Res.
2000;
292
188-194
- 71
Zia S, Ndoye A, Nguyen VT, Grando SA.
Nicotine enhances expression of the α3, α4, α5, and α7 nicotinic receptors modulating
calcium metabolism and regulating adhesion and motility of respiratory epithelial
cells.
Res Commun Mol Pathol Pharmacol.
1997;
97
243-262
- 72
Arredondo J, Nguyen VT, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA.
A receptor-mediated mechanism of nicotine toxicity in oral keratinocytes.
Lab Invest.
2001;
81
1653-1668
- 73
Grando SA, Horton RM, Mauro TM, Kist DA, Lee TX, Dahl MV.
Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx
and enhances cell differentiation.
J Invest Dermatol.
1996;
107
412-418
- 74
Smith JB, Fenske NA.
Cutaneous manifestations and consequences of smoking.
J Am Acad Dermatol.
1996;
34
717-732
- 75
Parnavelas JG, Kelly W, Burnstock G.
Ultrastructural localization of choline acetyltransferase in vascular endothelial
cells in rat brain.
Nature.
1985;
316
724-725
- 76
Kawashima K, Watanabe N, Oohata H, Fujimoto K, Suzuki T, Ishizaki Y, Morita I, Murota S.
Synthesis and release of acetylcholine by cultured bovine arterial endothelial cells.
Neurosci Lett.
1990;
119
156-158
- 77
Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I.
The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological
significance.
Jap J Pharmacol.
2001;
85
24-28
- 78
Haberberger RV, Bodenbenner M, Kummer W.
Expression of the cholinergic gene locus in pulmonary arterial endothelial cells.
Histochem Cell Biol.
2000;
113
379-387
- 79
Kirkpatrick CJ, Bittinger F, Nozadze K, Wessler I.
Expression and function of the non-neuronal cholinergic system in endothelial cells.
Life Sci.
2003;
72
211-216
- 80
Ciani F, Franceschini V.
Ultrastructural study and cholinesterase activity of paired capillaries in the new
brain.
J Hirnforsch.
1984;
25
11-20
- 81
Lips KS, Pfeil U, Reiner K, Rimasch C, Kuchelmeister K, Braun-Dullaeus RC, Haberberger RV,
Schmidt R, Kummer W.
Expression of the high affinity choline transporter CHT1 in rat and human arteries.
J Histochem Cytochem.
2003;
51
1645-1654
- 82
Macklin KD, Maus AD, Pereira EF, Albuquerque EX, Conti-Fine BM.
Human vascular endothelial cells express functional nicotinic acetylcholine receptors.
J Pharmacol Exp Ther.
1998;
287
435-439
- 83
Brüggmann D, Lips KS, Pfeil U, Haberberger RV, Kummer W.
Rat arteries contain multiple nicotine acetylcholine receptor α-subunits.
Life Sci.
2003;
72
2095-2099
- 84
Abbruscato TJ, Lopez SP, Marks KS, Hawkins BT, Davis TP.
Nicotine and cotonine modulate cerebral microvascular permeabilità and protein expression
of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells.
J Pharm Sci.
2002;
91
2525-2538
- 85
Moccia F, Frost C, Berra-Romani R, Tanzi F, Adams DJ.
Expression and function of neuronal nicotinic receptors in rat microvascular endothelial
cells.
Am J Physiol Heart Circ Physiol.
2004;
286
H486-H491
- 86
Hawkins BT, Egleton RD, Davis TP.
Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine
receptors.
Am J Physiol Heart Circ Physiol.
2005;
289
H212-H219
- 87
Milner P, Kirkpatrick K, Ralevic V, Toothill V, Pearson J, Burnstock G.
Endothelial cells cultured from umbilical vein release ATP, substance P, and acetylcholine
in response to increased flow.
Proc R Soc Lond (Biol).
1990;
241
245-248
- 88
Albough G, Bellavance E, Strande L, Heinburger S, Hewitt CW, Alexander JB.
Nicotine induces mononuclear leukocyte adhesion and expression of adhesion molecules,
VCAM and ICAM, in endothelial cells in vitro.
Ann Vasc Surg.
2004;
18
302-307
- 89
Wang Y, Wang L, Ai X, Zhao J, Hao X, Lu Y, Qiao Z.
Nicotine could augment adhesion molecule expression in human endothelial cells through
macrophages secreting TNFα, IL-1β.
Int Immunopharmacol..
2004;
4
1675-1686
- 90
Wang Y, Wang Z, Zhou Y, Liu L, Zhao Y, Yao C, Wang L, Qiao Z.
Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated
protein kinases in human endothelial cells.
Int J Biochem Cell Biol..
2006;
38
170-182
- 91
Saeed RW, Varma S, Peng-Nemeroff, Sherry B, Balakhaneh J, Tracey KJ, Al-Abed Y, Metz CN.
Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment
during inflammation.
JEM.
2005;
201
1113-1123
- 92
Chen YH, Chen SHM, Jong A, Zhou ZY, Li W, Suzuki K, Huang SH.
Enhanced Escherichia coli invasion of human brain microvascular endothelial cells
is associated with alternations in cytoskeleton induced by nicotine.
Cell Microbiol.
2002;
4
503-514
- 93
Tsai CH, Yeh HI, Tian TY, Lee YN, Lu CS, Ko YS.
Down regulating effect of nicotine on connexin43 gap junctions in human umbilical
vein endothelial cells is attenuated by statins.
Eur J Cell Biol.
2004;
82
589-595
- 94
Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP.
Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis.
Nature Med.
2001;
7
833-839
- 95
Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP.
A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors.
J Clin Invest.
2002;
110
527-536
- 96
Villablanca AC.
Nicotine stimulates DNS synthesis and proliferation in vascular endothelial cells
in vitro.
J Appl Physiol.
1998;
84
2089-2098
- 97
Kawashima K, Fujii T.
Extraneuronal cholinergic system in lymphocytes.
Pharmacol Ther.
2000;
86
29-48
- 98
Hollis DE, Lyne AG.
Acetylcholinesterase-positive langerhans cells in the epidermis and wool follicles
of the sheep.
J Invest Dermatol.
1972;
58
211-217
- 99
Fujii T, Yamada S, Misawa H, Tajima S, Fujimoto K, Suzuki T, Kawashima K.
Expression of choline acetyltransferase mRNA and protein in T-lymphocytes.
Proc Japan Acad.
1995;
71B
231-235
- 100
Kawashima K, Fujii T.
Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the
regulation of immune function.
Front Biosci.
2004;
9
2063-2085
- 101
Fujii T, Tsuchiya T, Yamada S, Fujimoto K, Suzuki T, Kasahara T, Kawashima K.
Localization and synthesis of acetylcholine in human leukemic T-cell lines.
J Neurosci Res.
1996;
44
66-72
- 102
Tucek S.
The synthesis of acetylcholine in skeletal muscles of the rat.
J Physiol (Lond).
1982;
322
53-69
- 103
Fujii T, Watanabe Y, Inoue T, Kawashima K.
Up-regulation of mRNA encoding the M5 muscarinic acetylcholine receptor in human T-
and B-lymphocytes during immunological responses.
Neurochem Res.
2003;
28
423-429
- 104
Fujii T, Ushiyama N, Hosonuma K, Suenaga A, Kawashima K.
Effects of human antithymocyte globulin on acetylcholine synthesis, its release and
choline acetyltransferase transcription in a human leukemic T-cell line.
J Neuroimmunol.
2002;
128
1-8
- 105
Fujii T, Kawashima K.
Calcium oscillation is induced by muscarinic acetylcholine receptor stimulation in
human leukemic T- and B-cell lines.
Naunyn-Schmiedberg's Arch Pharmacol.
2000;
362
14-21
- 106
Fuji T, Kawashima K.
An independent non-neuronal cholinergic system in lymphocytes.
Jpn J Pharmacol.
2001;
85
11-15
- 107
Kawashima K, Fujii T.
Minireview: The lymphocytic cholinergic system and its contribution to the regulation
of immune activity.
Life Sci.
2003;
74
675-696
- 108
Kawashima K, Fuji T.
The lymphocytic cholinergic system and its contribution to the regulation of immune
activity.
Life Sci.
2003;
74
675-696
- 109
Zimring JC, Kapp LM, Yamada M, Wess J, Kapp JA.
Regulation of CD8+ cytotoxic T lymphocyte differentiation by a cholinergic pathway.
J Immunol.
2005;
164
66-75
- 110
Albanesi C, Cavani A, Girolomoni G.
Interferon-γ-stimulated human keratinocytes express the genes necessary for the production
of peptide-loaded MHC-class II molecules.
J Invest Dermatol.
1998;
110
138-142
- 111
Weihe E, Nohr D, Michel S, Muller S, Zentel HJ, Fink T, Krekel J.
Molecular anatomy of the neuro-immune connection.
Int J Neurosci.
1991;
59
1-23
- 112
Tracey KJ.
The inflammatory reflex.
Nature.
2002;
420
((6917))
853-859
- 113
Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ.
The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation.
Mol Med.
2003;
9
125-134
- 114
Sato E, Koyama S, Okubo Y, Kubo K, Sekiguchi M.
Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic
activity.
Am J Physiol.
1998;
274
L970-L979
- 115
Disse B.
Antimuscarinic treatment for lung diseases from research to clinical practice.
Life Sci.
2001;
68
2557-2564
- 116
Razani-Boroujerdi S, Singh SP, Knall C, Hahn FF, Pena-Philippides JC, Kalra R, Langley RJ,
Sopori ML.
Chronic nicotine inhibits inflammation and promotes influenza infection.
Cell Immunol..
2004;
230
1-9
- 117
Mamata Y, Hakki A, Yamamoto Y, Newton C, Klein TW, Pross S, Friedman H.
Nicotine modulates cytokine production by Chlamydia pneumoniae infected human peripheral
blood cells.
Int Immunopharmacol.
2005;
5
749-756
- 118
Wessler I, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, Kilbinger H.
Release of non-neuronal acetylcholine from the isolated human placenta is mediated
by organic cation transporters.
Br J Pharmacol.
2001;
134
951-956
- 119
Koepsell H.
Organic cation transporters in intestine, kidney, liver and brain.
Annu Rev Physiol.
1998;
60
243-266
- 120
Wessler I, Deutsch C, Bittinger F, Kirkpatrick CJ, Kilbinger H.
Catecholamines inhibit the release of non-neuronal acetylcholine by substrate inhibition
at the organic cation transporters.
Naunyn-Schmiedeberg's Arch Pharmacol.
2002;
365
((Suppl))
R22
- 121
Alexander SPH, Mathie A, Peters JA.
Guide to Receptors and Channels: 7 TM Receptors.
Br J Pharmacol.
2005;
144
4-62
- 122
Alexander SPH, Mathie A, Peters JA.
Guide to receptors and channels: ion channels.
Br J Pharmacol.
2005;
144
73-94
- 123
Haddad EB, Patel H, Keeling JE, Yacoub MH, Barnes PJ, Belvisi MG.
Pharmacological characterization of the muscarinic receptor antagonist, glycopyrrolate,
in human and guinea-pig airways.
Br J Pharmacol.
1999;
127
413-420
- 124
Hayashi H, Fujii R.
Pharmacological profiles of the subtypes of muscarinic cholinoceptors that mediate
aggregation of pigment in the melanophores of two species of catfish.
Pigm Cell Res.
1994;
7
175-183
Correspondence
H. Kurzen
Department of Dermatology·Venereology and Allergology·University Medical Center Mannheim
Ruprecht-Karls University of Heidelberg
Theodor-Kutzer-Ufer 1-3
68135 Mannheim
Germany
Phone: +49/621/383 22 80
Fax: +49/621/383 38 15
Email: Hjalmar.Kurzen@haut.ma.uni-heidelberg.de
Email: Hjalmar.Kurzen@nexgo.de