Zusammenfassung
Zur Schaffung eines artifiziellen Nervenersatzes ist es optimal, ein Konduit aus resorbierbarem
Material zu verwenden, welches mit axonstimulierenden Zellen wie Schwann-Zellen oder
modifizierbaren Stammzellen besiedelt ist. Idealerweise beinhaltet die Beschichtung
eines Poly-3-hydroxybutyrat (PHB)-Konduits mit Zellen zur Aktivierung der Axonsprossung
1. eine homogene Verteilung der transplantierten Zellen, 2. ein Milieu, das das Überleben
der Zellen garantiert, sowie 3. eine Matrix, die sich rasch resorbiert, um die Axonregeneration
nicht zu blockieren. Die vorliegende In-vitro-Arbeit zeigt eine neue Methode zur Beschichtung
von Konduitmaterial in Form von Matten mit Stamm- und Schwann-Zellen mit verdünntem,
resorbierbaren Fibrinkleber Tisseel®. Anhand eines Quantifikationsmodells und Immunohistochemie
(S100, DAPI) wird gezeigt, dass undifferenzierte (uMSC) und differenzierte (dMSC)
mesenchymale Stammzellen (Schwann-Zell-Analogas) sowie Schwann-Zellen (SC) der Sprague-Dawley© -Ratte in verdünnter Fibrinmatrix signifikant besser applizierbar sind und in Position
gehalten werden als die Vergleichsgruppe ohne Matrixapplikation. Die Analyse der Gruppen
mit der Fibrinmatrix ergab hoch signifikant bessere Werte (p < 0,001) für die Zelladhärenz
auf den Matten sowie signifikant bessere Werte (p < 0,05) für den Zellverlust.
Abstract
Optimal seeding of a nerve conduit with cells is a core problem in tissue engineering
of constructing an artificial nerve substitute to gap lesions in the peripheral nerve
system. An ideal nerve gap substitute would have to present an equally distributed
number of cells that can activate the regrowing axons. This work shows a new in vitro
technique of two-step seeding of cells inside a conduit and on layered mats that allows
a valuable targeting of the cells and a proven survival in the environment of poly-3-hydroxybutyrate
(PHB) conduits. The technique uses two components of diluted fibrin glue Tisseel®.
Initially, the chosen area on the mat was coated with thrombin followed from the seeding
of a fibrinogen-cell compound. Using Sprague Dawley® rat cells, we could demonstrate
with immunohistochemistry (S100, DAPI) techniques that undifferentiated (uMSC) and
Schwann cells (SC) mimicking differentiated mesenchymal stem cells (dMSC) as well
as SC can be suspended and targeted significantly better in dissolvable diluted fibrin
glue than in growth medium. Analysis showed significantly better values for adherence
(p < 0.001) and drop off (p < 0.05) from seeded cells. Using this two-step application
allows the seeding of the cells to be more precise and simplifies the handling of
cell transplantation.
Schlüsselwörter
Chirurgie der peripheren Nerven - Nervenregeneration - Tissue Engineering - Transplantation
experimentell
Key words
peripheral nerve surgery - fibrin glue - Tisseel® - PHB conduit
Literatur
1
Ansselin A D, Fink T, Davey D F.
Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells.
Neuropathol Appl Neurobiol.
1997;
23
387-398
2
Bensaid W, Triffitt J T, Blanchat C. et al. .
A biodegradable fibrin scaffold for mesenchymal stem cell transplantation.
Biomaterials.
2003;
24
2497-2502
3
Choi B H, Han S G, Kim S H. et al. .
Autologous fibrin glue in peripheral nerve regeneration in vivo.
Microsurgery.
2005;
25
495-499
4
Dezawa M, Kanno H, Hoshino M. et al. .
Specific induction of neuronal cells from bone marrow stromal cells and application
for autologous transplantation.
J Clin Invest.
2004;
113
1701-1710
5
Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H.
Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated
bone-marrow stromal cells.
Eur J Neurosci.
2001;
14
1771-1776
6
Fang H, Peng S, Chen A. et al. .
Biocompatibility studies on fibrin glue cultured with bone marrow mesenchymal stem
cells in vitro.
J Huazhong Univ Sci Technolog Med Sci.
2004;
24
272-274
7
Fu S Y, Gordon T.
The cellular and molecular basis of peripheral nerve regeneration.
Mol Neurobiol.
1997;
14
67-116
8
Goldberg J L, Barres B A.
The relationship between neuronal survival and regeneration.
Annu Rev Neurosci.
2000;
23
579-612
9
Guenard V, Kleitman N, Morrissey T K, Bunge R P, Aebischer P.
Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance
channels enhance peripheral nerve regeneration.
J Neurosci.
1992;
12
3310-3320
10
Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti J P.
A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve
regeneration.
Tissue Eng.
2000;
6
119-127
11
Ide C.
Peripheral nerve regeneration.
Neurosci Res.
1996;
25
101-121
12
Levi A D, Sonntag V K, Dickman C. et al. .
The role of cultured Schwann cell grafts in the repair of gaps within the peripheral
nervous system of primates.
Exp Neurol.
1997;
143
25-36
13
Lonze B E, Riccio A, Cohen S, Ginty D D.
Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking
CREB.
Neuron.
2002;
34
371-385
14
Sofroniew M V, Howe C L, Mobley W C.
Nerve growth factor signaling, neuroprotection, and neural repair.
Annu Rev Neurosci.
2001;
24
1217-1281
15
Tohill M, Mantovani C, Wiberg M, Terenghi G.
Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration.
Neurosci Lett.
2004;
362
200-203
16
Tohill M, Terenghi G.
Stem-cell plasticity and therapy for injuries of the peripheral nervous system.
Biotechnol Appl Biochem.
2004;
40
17-24
17
Tohill M P, Mann D J, Mantovani C M, Wiberg M, Terenghi G.
Green fluorescent protein is a stable morphological marker for Schwann cell transplants
in bioengineered nerve conduits.
Tissue Eng.
2004;
10
1359-1367
18
Wechselberger G, Russell R C, Neumeister M W. et al. .
Successful transplantation of three tissue-engineered cell types using capsule induction
technique and fibrin glue as a delivery vehicle.
Plast Reconstr Surg.
2002;
110
123-129
19
Wechselberger G, Schoeller T, Stenzl A. et al. .
Fibrin glue as a delivery vehicle for autologous urothelial cell transplantation onto
a prefabricated pouch.
J Urol.
1998;
160
583-586
20
Yoshii S, Shima M, Oka M. et al. .
Nerve regeneration along collagen filament and the presence of distal nerve stump.
Neurol Res.
2004;
26
145-150
21
Zhang F, Blain B, Beck J. et al. .
Autogenous venous graft with one-stage prepared Schwann cells as a conduit for repair
of long segmental nerve defects.
J Reconstr Microsurg.
2002;
18
295-300
Dr. med. Daniel F. Kalbermatten
Abteilung für Plastische, Rekonstruktive und Ästhetische Chirurgie Klinik für Wiederherstellende Chirurgie Universitätsspital Basel
Spitalstraße 21
4056 Basel
Schweiz
Email: daniel.kalbermatten@bluewin.ch