References and Notes
<A NAME="RS15006ST-1">1</A>
Current addresses: E. J. Zylstra, 166 Chilton Ave, San Francisco, CA 94131, USA; M.
W.-L. She, 3952 Angelo Ave, Oakland, CA 94619, USA; W. A. Salamant, Department of
Chemistry, University of California, Irvine, California 92697, USA; J. W. Leahy, Exelixis
Pharmaceuticals, Inc., 210 East Grand Ave, Box 511, South San Francisco, CA 94083,
USA.
<A NAME="RS15006ST-2">2</A>
Ichiba T.
Yoshida WY.
Scheuer PJ.
Higa T.
Gravalos DG.
J. Am. Chem. Soc.
1991,
113:
3173
<A NAME="RS15006ST-3">3</A>
Higa T.
Tanaka J.-I.
Kitamura A.
Koyama T.
Takahashi M.
Uchida T.
Pure Appl. Chem.
1994,
66:
2227
<A NAME="RS15006ST-4">4</A> For a review on oxazole-containing natural products, see:
Yeh VSC.
Tetrahedron
2004,
60:
11995
<A NAME="RS15006ST-5A">5a</A>
Wipf P.
Lim S.
J. Am. Chem. Soc.
1995,
117:
558
<A NAME="RS15006ST-5B">5b</A>
Wipf P.
Lim S.
Chimia
1996,
50:
157
<A NAME="RS15006ST-6">6</A>
Williams DR.
Brooks DA.
Berliner MA.
J. Am. Chem. Soc.
1999,
121:
4924
<A NAME="RS15006ST-7">7</A>
Barrett AGM.
Kohrt JT.
Synlett
1995,
415
<A NAME="RS15006ST-8">8</A>
Smith TE.
Balskus EP.
Heterocycles
2002,
57:
1219
<A NAME="RS15006ST-9A">9a</A>
Cheng Z.
Hamada Y.
Shioiri T.
Synlett
1997,
109
<A NAME="RS15006ST-9B">9b</A>
Shioiri T.
McFarlane N.
Hamada Y.
Heterocycles
1998,
47:
73
<A NAME="RS15006ST-9C">9c</A>
Yokokawa F.
Asano T.
Shioiri T.
Org. Lett.
2000,
2:
4169
<A NAME="RS15006ST-9D">9d</A>
Yokokawa F.
Asano T.
Shioiri T.
Tetrahedron
2001,
51:
6311
<A NAME="RS15006ST-10">10</A>
Hanessian SH.
Ugolini A.
Dubé D.
Glamyan A.
Can. J. Chem.
1984,
62:
2146
<A NAME="RS15006ST-11A">11a</A>
This method improves upon preceding methods for isopentylidene synthesis, for it requires
only commercially available reagents.
<A NAME="RS15006ST-11B">11b</A>
Procedure for Isopentylidene Synthesis: To a 1-L flask under N2 were added the S-enantiomer of triol 5 (21.01 g, 0.1980 mol), 3-pentanone (80 mL, 0.79 mol), trimethyl orthoformate (33
mL, 0.30 mol), p-TsOH (0.44 g, 0.023 mol), anhyd MeOH (75 mL), and distilled CH2Cl2 (150 mL). The mixture was heated to reflux and stirred for 15 h. Et3N (1.8 mL, 0.013 mol) was added, and the mixture was stirred for 30 min. H2O (100 mL) was added, and the aqueous phase was extracted with CH2Cl2 (3 × 100 mL). The combined organic phases were dried over NaSO4, filtered, and concentrated to a clear, yellow-brown liquid. Flash chromatography
(20% EtOAc-hexanes) yielded the 1,2-isopentylidene-protected 5 as a clear, yellow-tinged liquid (29 g, 85%). IR: 3510, 2950, 1460, 1170, 1080 cm-1. 1H NMR (300 MHz): δ = 0.87-0.93 (m, 6 H), 1.59-1.69 (m, 4 H), 1.79-1.85 (m, 2 H), 2.26
(t, J = 5.0 Hz, 1 H), 3.54 (t, J = 8.0 Hz, 1 H), 3.81 (dd, J = 6.0, 12.0 Hz, 2 H), 4.10 (dd, J = 6.0, 7.9 Hz, 1 H), 4.25 (m, 1 H).
<A NAME="RS15006ST-12A">12a</A>
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1987,
52:
2559
<A NAME="RS15006ST-12B">12b</A>
Leanna MR.
Sowin TJ.
Morton HE.
Tetrahedron Lett.
1992,
33:
5029
<A NAME="RS15006ST-13A">13a</A>
Keck GE.
Krishnamurthy D.
Grier MC.
J. Org. Chem.
1993,
58:
6543
<A NAME="RS15006ST-13B">13b</A>
Keck GE.
Geraci LS.
Tetrahedron Lett.
1993,
34:
7827
<A NAME="RS15006ST-14">14</A>
Spectral data for diol 8: 1H NMR (300 MHz): δ = 1.50 (ddd, J = 2.9, 7.8, 14.6 Hz, 1 H), 1.62-1.76 (m, 4 H), 2.19 (dd, J = 7.6, 13.8 Hz, 1 H), 2.47 (dd, J = 5.5, 13.7 Hz, 1 H), 2.85 (s, 2 H), 3.40 (dd, J = 6.8, 11.2 Hz, 1 H), 3.56 (dd, J = 3.3, 11.2 Hz, 1 H), 3.78 (s, 3 H), 3.82-3.90 (m, 1 H), 3.91-4.02 (m, 1 H), 4.42
(d, J = 11.0 Hz, 1 H), 4.56 (d, J = 11.0 Hz, 1 H), 4.76 (s, 1 H), 4.81 (s, 1 H), 6.87 (d, J = 8.6 Hz, 1 H), 7.26 (d, J = 8.6 Hz, 1 H). 13C NMR (100 MHz): δ = 22.8, 36.2, 42.1, 55.2, 66.9, 69.0, 70.9, 74.5, 113.3, 113.9,
129.5, 130.1, 142.2, 159.3.
<A NAME="RS15006ST-15">15</A> For preparation of a related bisoxazole, see:
Sakakura A.
Kondo R.
Ishihara K.
Org. Lett.
2005,
7:
1971
<A NAME="RS15006ST-16A">16a</A>
Szczepankiewicz B.
Ph.D. Thesis
University of California at Berkeley;
USA:
1995.
<A NAME="RS15006ST-16B">16b</A>
Lafontaine JA.
Leahy JW.
Tetrahedron Lett.
1995,
36:
6029
<A NAME="RS15006ST-17">17</A>
Attempts with serine ethyl ester afforded a higher yield for the amidation (80%) and
comparable yields for the first oxazole synthesis; however, as the ethyl ester was
less readily accessible, the methyl ester was used.
<A NAME="RS15006ST-18">18</A>
General Procedure for Oxazoline Synthesis: To a dry 100-mL flask under N2 was added a solution of the amide 10 (1.00 g, 3.39 mmol) in anhyd MeCN-CH2Cl2 (4:1, 15 mL), Ph3P (1.33 g, 5.08 mmol), and DIPEA (0.94 mL, 5.47 mmol). After the mixture was cooled
in an ice-bath for 90 min, CCl4 (0.50 mL, 5.16 mmol) was added slowly. After 14 min, the mixture was allowed to warm
to r.t. and stirred for 5.25 h. The mixture was cooled in an ice bath. EtOAc (30 mL)
and sat. aq NaHCO3 (9 mL) were added, and after 10 min, the biphasic mixture was diluted with H2O (21 mL). The aqueous layer was extracted with EtOAc (3 × 15 mL); the combined organic
layers were washed with brine (1 × 20 mL), dried over NaSO4, filtered, and concentrated to a yellow solid. Flash chromatography (25-50% EtOAc
gradient in hexanes) yielded the water-sensitive oxazoline as a clear yellow oil (0.66
g, 70%). 1H NMR (300 MHz): δ = 1.98 (m, 2 H), 2.47 (m, 2 H), 3.54 (t, J = 6.1 Hz, 2 H), 3.46 (dd, J = 8.8, 10.6 Hz, 1 H), 3.79 (s, 3 H), 4.46-4.50 (m, 3 H), 4.66-4.69 (m, 1 H), 7.27-7.36
(m, 5 H).
<A NAME="RS15006ST-19">19</A>
Barrish JC.
Singh J.
Spergel SH.
Han W.-C.
Kissick TP.
Kronenthal DR.
Mueller RH.
J. Org. Chem.
1993,
58:
4494
<A NAME="RS15006ST-20A">20a</A>
Shapiro R.
J. Org. Chem.
1993,
58:
5759
<A NAME="RS15006ST-20B">20b</A>
For best results we suggest purifying the amine 12 shortly before amide synthesis, as yields for the bisoxazole cyclization dropped
by as much as 30% in other cases.
<A NAME="RS15006ST-21">21</A>
The reduction of the bisoxazole was a sensitive reaction; during a repetition on larger
scale, yields dropped to 30% because of competitive decomposition.
<A NAME="RS15006ST-22">22</A>
Matsuda F.
Tomiyoshi N.
Yanagiya M.
Matsumoto T.
Tetrahedron
1990,
46:
3469
<A NAME="RS15006ST-23">23</A>
Spectral data for dithiane 3: 1H NMR (300 MHz): δ = 2.03-2.18 (m, 4 H), 2.94-3.00 (m, 6 H), 3.56 (t, J = 6.1 Hz, 2 H), 4.50 (s, 2 H), 5.18 (s, 1 H), 7.26-7.32 (m, 5 H), 7.74 (s, 1 H),
8.16 (s, 1 H). 13C NMR (100 MHz): δ = 24.9, 25.1, 26.8, 30.3, 41.4, 68.7, 72.8, 127.5, 127.5, 128.2,
130.0, 135.7, 138.1, 138.3, 140.5, 155.2, 165.7.
<A NAME="RS15006ST-24">24</A> We tested the enantiomeric purity of aldehyde 17’s enantiomeric purity by reducing a sample to the alcohol and comparing its rotation
to the alcohol produced by lithium borohydride reduction of ester 16. We observed only 1.5% racemization, which we judged acceptable. See:
Roush WR.
Palkowitz AD.
Ando K.
J. Am. Chem. Soc.
1990,
112:
6348
<A NAME="RS15006ST-25A">25a</A>
Joe D.
Ph.D. Thesis
University of California at Berkeley;
USA:
1994.
<A NAME="RS15006ST-25B">25b</A>
The phosphonate is prepared by Arbuzov reaction between methyl 2-bromopropionate and
trimethyl phosphite. This method is capricious and highly sensitive to the purity
of the starting materials.
<A NAME="RS15006ST-25C">25c</A>
The lithium enolate was deprotonated with n-BuLi (1.01 equiv) in Et2O (0.125 M) at 0 °C to r.t.
<A NAME="RS15006ST-26A">26a</A>
Nagaoka H.
Kishi Y.
Tetrahedron
1981,
37:
3873
<A NAME="RS15006ST-26B">26b</A>
The unusual Z selectivity is only maintained for the olefination reagent with methyl ester and
methyl phosphonate.
<A NAME="RS15006ST-26C">26c</A> The stereochemistry of the two isomers of 19 was corroborated by chemical shift calculations:
Silverstein RM.
Bassler GC.
Morrill TC.
Spectrometric Identification of Organic Compounds
5th ed.:
John Wiley & Sons;
New York:
1991.
p.215
<A NAME="RS15006ST-27">27</A>
Yoon NM.
Gyoung YS.
J. Org. Chem.
1985,
50:
2443
<A NAME="RS15006ST-28">28</A>
Dess DB.
Martin JC.
J. Org. Chem.
1983,
48:
4155
<A NAME="RS15006ST-29A">29a</A>
The β,γ-unsaturated aldehyde could survive at room temperature for over a day without
appreciable decomposition. In contrast, the benzoate-protected analogue would decompose
within hours, and it could only be synthesized in low yield (33-56%).
<A NAME="RS15006ST-29B">29b</A>
Spectral data for the (S)-β,γ-unsaturated aldehyde: [α]D
20 +135 (c = 0.54, CHCl3). 1H NMR (300 MHz): δ = 1.05 (d, J = 6.9 Hz, 3 H), 1.94 (d, J = 1.2 Hz, 3 H), 2.95-3.00 (m, 1 H), 3.58 (d, J = 10.6 Hz, 1 H), 3.68 (d, J = 10.6 Hz, 1 H), 5.07 (d, J = 9.5 Hz, 1 H), 7.21-7.48 (m, 15 H), 9.38 (d, J = 1.3 Hz, 1 H). 13C NMR (100 MHz): δ = 14.1, 22.3, 46.0, 62.7, 86.7, 123.8, 127.0, 127.7, 128.6, 137.8,
143.9, 201.2.
<A NAME="RS15006ST-30A">30a</A>
Schlosser M.
Schaub B.
J. Am. Chem. Soc.
1982,
104:
5821
<A NAME="RS15006ST-30B">30b</A>
Maryanoff BE.
Reitz AB.
Mutter MS.
Inners RR.
Almond HR.
Whittle RR.
Olofson RA.
J. Am. Chem. Soc.
1986,
108:
7664
<A NAME="RS15006ST-31A">31a</A>
Spectral data for diene 4: 1H NMR (300 MHz): δ = 0.99 (t, J = 5.1 Hz, 3 H), 1.61-1.68 (m, 3 H), 1.76-1.78 (m, 3 H), 3.08 (m, 1 H), 3.42-3.50
(m, 1 H), 3.96-4.18 (m, 2 H), 5.10-5.38 (m, 3 H).
<A NAME="RS15006ST-31B">31b</A>
Spectral data for ent-(S)-20: IR: 3022, 2947, 2855, 2307, 1112, 1085, 702 cm-1. 1H NMR (300 MHz): δ = 0.94 (d, J = 6.7 Hz, 3 H), 1.02 (s, 9 H), 1.89 (d, J = 1.1 Hz, 3 H), 2.40-2.50 (m, 1 H), 3.38 (dd, J = 1.7, 9.5 Hz, 2 H), 3.48 (d, J = 10.4 Hz, 1 H), 3.75 (d, J = 10.4 Hz, 1 H), 5.10 (d, J = 9.5 Hz, 1 H), 7.24-7.63 (m, 25 H). 13C NMR (100 MHz): δ = 17.5, 19.1, 22.0, 26.7, 34.9, 62.8, 68.5, 86.4, 126.7, 127.4,
127.6, 128.6, 129.3, 131.1, 133.0, 133.8, 133.8, 135.5, 135.5, 144.3.
<A NAME="RS15006ST-32">32</A>
A test reaction conducted with the aldehyde derived from ent-20 and tetraethylphosphonium bromide did favor the E-olefin (E/Z = 4.8:1), but in unacceptably low yield (9%).
<A NAME="RS15006ST-33">33</A> For the synthesis of 2-phenyl-1,3-dithiane, see:
Roberts RM.
Cheng C.-C.
J. Org. Chem.
1958,
23:
983
<A NAME="RS15006ST-34">34</A>
Cink RD.
Forsyth CJ.
J. Org. Chem.
1995,
60:
8122 ; and supplementary material
<A NAME="RS15006ST-35A">35a</A>
Corey EJ.
Erickson BJ.
J. Org. Chem.
1971,
36:
3553
<A NAME="RS15006ST-35B">35b</A>
Trost BM.
Grese TA.
J. Org. Chem.
1992,
57:
686
<A NAME="RS15006ST-36">36</A>
Chen K.-M.
Hardtmann GE.
Prasad K.
Repic O.
Shapiro MJ.
Tetrahedron Lett.
1987,
28:
155
<A NAME="RS15006ST-37">37</A>
The model 26 was prepared from racemic N-benzoyl serine methyl ester by methods analogous to those used for the synthesis
of oxazole 11 and dithiane 3.
<A NAME="RS15006ST-38">38</A>
Williams DR.
Brooks DA.
Meyer KA.
Tetrahedron Lett.
1998,
39:
8023
<A NAME="RS15006ST-39">39</A>
Liu P.
Panek JS.
Tetrahedron Lett.
1998,
39:
6147