Horm Metab Res 2007; 39(3): 207-211
DOI: 10.1055/s-2007-970419
Original Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Serum Oxidized Low Density Lipoprotein, Paraoxonase 1 and Lipid Peroxidation Levels during Oral Glucose Tolerance Test

O. Serin 1 , D. Konukoglu 2 , S. Firtina 2 , O. Mavis 3
  • 1Taksim Education and Research Hospital, Department of Biochemistry, Istanbul, Turkey
  • 2Istanbul University, Cerrahpasa Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
  • 3Taksim Education and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
Further Information

Publication History

received 29. 6. 2006

accepted after second revision 23. 10. 2006

Publication Date:
20 March 2007 (online)

Abstract

Increasing evidence suggests that the postprandial state is a contributing factor to the development of atherosclerosis. To evaluate the effects of acute hyperglycemia on the oxidative stress, concentrations of serum-oxidized low density lipoprotein (oxLDL), paraoxonase 1 (PON1), and thiobarbituric acid reactive substances (TBARS) were measured in subjects with normal glucose tolerance (NGT) (n=35), impaired glucose tolerance (IGT) (n=25), and diabetic glucose tolerance (DGT) (n=20). In NGT group, the 2 hours’ TBARS and oxLDL levels were not statistically different when compared to baseline, and 2 hours’ PON1 activities were higher when compared to baseline (p<0.01). Subjects with IGT and DGT have higher 2 hours’ serum TBARS and oxLDL levels than their baseline levels (p<0.01, for each). Baseline oxLDL levels of both IGT and DGT groups were higher than NGT group (p<0.01 and p<0.01, respectively). While there were not any significant differences in 2 hours’ versus baseline PON1 activities in the IGT group, the 2 hours’ versus baseline PON1 activities in the DGT group were significantly lower (p<0.01). The postchallenge 2 hours’ PON1 activities of both IGT and DGT groups were lower than NGT group (p<0.01 and p<0.01, respectively). Baseline oxLDL was positively correlated with 2 hours’ glucose (r=0.613, p<0.01) in IGT and DGT groups. PON1 activities were correlated with HDL-cholesterol, total cholesterol, and fasting glucose (r=0.680, r=0.698 and r=0.431, respectively, for each p<0.01) in NGT. In conclusion, oxidative stress occurs at an early stage in diabetes, and protective effects of HDL against atherosclerosis may be dependent on the PON1 activities.

References

  • 1 Steiner G. Atherosclerosis, the major complications of diabetes.  Adv Exp Med Biol. 1985;  189 277-297
  • 2 Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.  Diabetes. 1999;  48 1-9
  • 3 Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat?.  Diabetes. 2005;  54 1-7
  • 4 Hahn M, Subbiah MT. Significant association of lipid peroxidation products with high density lipoproteins.  Biochem Mol Biol Int. 1994;  33 699-704
  • 5 Schwenke DC. Antioxidants and atherogenesis.  J Nutr Biochem. 1998;  9 424-445
  • 6 Schwenke DC. Aging, menopause and free radicals.  Semin Reprod Endocrinol. 1998;  16 281-308
  • 7 Witztum JL, Steinberg D. Role of oxidized low-density lipoprotein in atherogenesis.  J Clin Invest. 1991;  88 1785-1792
  • 8 Gordon D. In: Durrington PN (ed). HDL: where should the clinician stand?. London: Mark Allen Publishing 1992: 17-20
  • 9 Inoue T, Uchida T, Kamishirado H, Takayanagi K, Hayashi T, Morooka S, Morooka S, Saniabadi AR, Nakajima K. Remnant-like lipoprotein particles as risk factors for coronary artery disease in elderly patients.  Horm Metab Res. 2004;  36 298-302
  • 10 Berg G, Mesch V, Boero L, Sayegh F, Prada M, Royer M, Muzzio ML, Schreier L, Siseles N, Benencia H. Lipid and lipoprotein profile in menopausal transition. Effects of hormones, age and fat distribution.  Horm Metab Res. 2004;  36 215-220
  • 11 Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein.  J Clin Invest. 1991;  88 2039-2046
  • 12 Mackness MI, Abbott CA, Arrol S, Durrington PN. The role of high density lipoprotein and lipid soluble antioxidant vitamins in inhibiting low density lipoprotein oxidation.  Biochem J. 1993;  294 829-834
  • 13 Mackness MI, Durrington PN. High density lipoprotein, its enzymes and its potential to influence lipid peroxidation.  Atherosclerosis. 1995;  115 243-253
  • 14 Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture.  Arterioscler Thromb Vasc Biol. 1996;  16 831-842
  • 15 Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein.  J Clin Invest. 1995;  96 2882-2891
  • 16 Mackness MI, Harty D, Bhatnagar D, Winocour PH, Arrol S, Ishola M, Durrington PN. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus.  Atherosclerosis. 1991;  86 193-198
  • 17 Abbott CA, Mackness MI, Kumar S, Boulton AJ, Durrington PN. Serum paraoxonase activity, concentration and phenotype distribution in diabetes mellitus and its relationship to serum lipids and lipoproteins.  Arterioscler Thromb Vasc Biol. 1995;  15 1812-1818
  • 18 Groenweld Y, Petri H, Hermans J, Springer MP. Relationship between blood glucose level and mortality in type 2 diabetes mellitus: a systematic review.  Diabet Med. 1999;  16 2-13
  • 19 The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus . Report of the Expert Committee on the Diagnosis and classification of Diabetes Mellitus. Diabetes Care.  1999;  22 ((Suppl 1)) S5-S19
  • 20 Leiter LA, Ceriello A, Davidson JA, Hanefeld M, Monnier L, Owens DR, Tajima N, Tuomilehto J. International Prandial Glucose Regulation (PGR) Study Group . Postprandial glucose regulation: new data and new implications.  Clin Ther. 2005;  27 S42-S56
  • 21 Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease.  Circulation. 1998;  98 1487-1494
  • 22 Hasselwander O, Savage DA, Mc Master D, Laughrey CM, Mc Namee PT, Middleton D, Nicholls DP, Maxwell AP, Young IS. Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients.  Kidney Int. 1999;  56 289-298
  • 23 Buege JA, Aust SD. Microsomal lipid peroxidation.  Methods Enzymol. 1978;  52 302-310
  • 24 Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1C level.  Diabetes Care. 2000;  23 1830-1834
  • 25 Regnstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man.  Lancet. 1992;  339 1183-1186
  • 26 Babiy AV, Gebicki JM, Sullivan DR, Willey K. Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation.  Biochem Pharmacol. 1992;  43 995-1000
  • 27 Schwenke DC, D’Agostino Jr RB, Goff Jr DC, Karter AJ, Rewers MJ, Wagenknecht LE. Insulin resistance atherosclerosis study. Differences in LDL oxidizability by glycemic status: the insulin resistance atherosclerosis study.  Diabetes Care. 2003;  26 1449-1455
  • 28 Kopprasch S, Pietzsch J, Kuhlisch E, Fuecker K, Temelkova-Kurktschiev T, Hanefeld M, Kuhne H, Julius U, Graessler J. In vivo evidence for increased oxidation of circulating LDL in impaired glucose tolerance.  Diabetes. 2002;  51 3102-3106
  • 29 Kopprasch S, Pietzsch J, Kuhlisch E, Graessler J. Lack of association between serum paraoxonase 1 activities and increased oxidized low-density lipoprotein levels in impaired glucose tolerance and newly diagnosed diabetes mellitus.  J Clin Endocrinol Metab. 2003;  88 1711-1716
  • 30 Mackness B, Mackness MI, Arrol S, Turkie W, Julier K, Abuashia B, Miller JE, Boulton AJ, Durrington PN. Serum paraoxonase PON1 55 and 192 polymorphism and paraoxonase activity and concentration in non insulin dependent diabetes mellitus.  Atherosclerosis. 1998;  139 341-349
  • 31 Mackness B, Durrington PN, Abuashia B, Boulton AJM, Mackness MI. Low paraoxonase activity in type 2 diabetes mellitus complicated by retinopathy.  Clin Science. 2000;  98 355-363
  • 32 Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase.  J Clin Invest. 1998;  101 1581-1590
  • 33 Rodrigo L, Machness B, Durrington PN, Hernandez A, Mackness MI. Hydrolysis of platelet-activating factor by human serum paraoxonase.  Biochem J. 2001;  354 1-7
  • 34 Schmidt MI, Saad MJA, Duncan BB. Subclinical inflammation and obesity, diabetes and related disorders.  Drug Discovery Today Disease Mechanisms. 2005;  2 307-312

Correspondence

O. Serin

Fatih Sitesi

B-4 Blok

Daire 5 Silivrikapi

Fatih

Istanbul

Turkey

Phone: 902/12/252 4300/2002

Fax: 902/12/252 6300

Email: dkonuk@istanbul.edu.tr

    >