Abstract
The dynamic resolution of racemic acyclic α-hydroxy ketone derivatives is accomplished
using an optically active host compound, TADDOL, under basic conditions to give the
corresponding optically active ketones.
Key words
acyclic ketones - deracemization - enantiomeric resolution - host-guest systems -
optically active compounds
References and Notes
Recent reviews for asymmetric protonation:
<A NAME="RU14906ST-1A">1a</A>
Eames J.
Suggate MJ.
Angew. Chem. Int. Ed.
2005,
44:
186
<A NAME="RU14906ST-1B">1b</A>
Duhamel L.
Duhamel P.
Plaquevent J.-C.
Tetrahedron: Asymmetry
2004,
15:
3653
Recent examples for asymmetric protonation:
<A NAME="RU14906ST-2A">2a</A>
Mitsuhashi K.
Ito R.
Arai T.
Yanagisawa A.
Org. Lett.
2006,
8:
1721
<A NAME="RU14906ST-2B">2b</A>
Nakashima D.
Yamamoto H.
Synlett
2006,
150
<A NAME="RU14906ST-2C">2c</A>
Reynods NT.
Rovis T.
J. Am. Chem. Soc.
2005,
127:
16406
<A NAME="RU14906ST-2D">2d</A>
Coumbarides GS.
Eames J.
Scheuermann JEW.
Sibbons KF.
Suggate MJ.
Watkinson M.
Bull. Chem. Soc. Jpn.
2005,
78:
906
<A NAME="RU14906ST-2E">2e</A>
Gil J.
Medio-Simon M.
Mancha G.
Asensio G.
Eur. J. Org. Chem.
2005,
1561
<A NAME="RU14906ST-2F">2f</A>
Melgar-Fernandez R.
Juaristi E.
Tetrahedron Lett.
2005,
46:
1221
<A NAME="RU14906ST-3A">3a</A>
Ohta H.
Matsumoto K.
Tsutsumi S.
Ihori T.
J. Chem. Soc., Chem. Commun.
1989,
485
<A NAME="RU14906ST-3B">3b</A>
Matsumoto K.
Ohta H.
Chem. Lett.
1989,
1589
<A NAME="RU14906ST-3C">3c</A>
Matsumoto K.
Tsutsumi S.
Ihori T.
Ohta H.
J. Am. Chem. Soc.
1990,
112:
9614
<A NAME="RU14906ST-3D">3d</A>
Matsumoto K.
Oishi T.
Nakata T.
Shibata T.
Ohta K.
Biocatalysis
1994,
9:
97
<A NAME="RU14906ST-3E">3e</A>
Matsumoto K.
Kitajima H.
Nakata T.
J. Mol. Catal. B: Enzym.
1995,
1:
17
<A NAME="RU14906ST-4">4</A>
Matsumoto K.
Ohta H.
Tetrahedron Lett.
1991,
32:
4729
Recent reviews for enzymatic deracemization:
<A NAME="RU14906ST-5A">5a</A>
Fotheringham I.
Archer I.
Carr R.
Speight R.
Turner NJ.
Biochem. Soc. Trans.
2006,
34:
287
<A NAME="RU14906ST-5B">5b</A>
Strauss UT.
Felfer U.
Faber K.
Tetrahedron: Asymmetry
1999,
10:
107
<A NAME="RU14906ST-5C">5c</A>
Kroutil W.
Faber K.
Tetrahedron: Asymmetry
1998,
9:
2901
<A NAME="RU14906ST-6A">6a</A>
Larissegger B.
Kroutil W.
Faber K.
Synlett
2005,
1936
<A NAME="RU14906ST-6B">6b</A>
Carr R.
Alexeeva M.
Dawson MJ.
Gotor-Fernandez V.
Humphrey CE.
Cara E.
Turner NJ.
ChemBioChem
2005,
6:
637
<A NAME="RU14906ST-6C">6c</A>
Cardus GJ.
Carnell AJ.
Trauthwein H.
Riemeir T.
Tetrahedron: Asymmetry
2004,
15:
239
<A NAME="RU14906ST-6D">6d</A>
Beard TM.
Turner NJ.
Chem. Commun.
2002,
246
<A NAME="RU14906ST-7A">7a</A>
Baskar B.
Pandian NG.
Priya K.
Chadha A.
Tetrahedron
2005,
61:
12296
<A NAME="RU14906ST-7B">7b</A>
Mitsukura K.
Yoshida T.
Nagasawa T.
Biotechnol. Lett.
2002,
24:
1615
<A NAME="RU14906ST-7C">7c</A>
Rhys-Williams W.
Thomason MJ.
Hung Y.-F.
Hanlon GW.
Lloyd AW.
Chirality
1998,
10:
528
<A NAME="RU14906ST-7D">7d</A>
Reichel C.
Brugger R.
Bang H.
Geisslinger G.
Brune K.
Mol. Pharmacol.
1997,
51:
576
<A NAME="RU14906ST-7E">7e</A>
Rhys-Williams W.
Thomason MJ.
Lloyd AW.
Hanlon GW.
Pharm. Sci.
1996,
2:
537
<A NAME="RU14906ST-7F">7f</A>
Menzel S.
Waibel R.
Brune K.
Geisslinger G.
Biochem. Pharmocol.
1994,
48:
1056
<A NAME="RU14906ST-8A">8a</A>
Kato D.-I.
Miyamoto K.
Ohta H.
Biocatal. Biotransform.
2005,
23:
375
<A NAME="RU14906ST-8B">8b</A>
Kato D.-I.
Miyamoto K.
Ohta H.
Tetrahedron: Asymmetry
2004,
15:
2965
<A NAME="RU14906ST-8C">8c</A>
Kato D.-I.
Satoshi M.
Ohta H.
J. Org. Chem.
2003,
68:
7234
<A NAME="RU14906ST-8D">8d</A>
Kato D.-I.
Satoshi M.
Ohta H.
Org. Lett.
2002,
4:
371
<A NAME="RU14906ST-9">9</A>
Pirkle WH.
Reno DS.
J. Am. Chem. Soc.
1987,
109:
7189
<A NAME="RU14906ST-10A">10a</A>
Toda F.
Mori K.
J. Chem. Soc., Chem. Commun.
1986,
1357
<A NAME="RU14906ST-10B">10b</A>
Brussee J.
Groenendijk JLG.
te Koppele JM.
Jansen ACA.
Tetrahedron
1985,
41:
3313
<A NAME="RU14906ST-10C">10c</A>
Toda F.
Tanaka K.
Chem. Lett.
1983,
12:
661
<A NAME="RU14906ST-11A">11a</A>
Kaku H.
Okamoto N.
Nakamura A.
Tsunoda T.
Chem. Lett.
2004,
33:
516
<A NAME="RU14906ST-11B">11b</A>
Kaku H.
Takaoka S.
Tsunoda T.
Tetrahedron
2002,
58:
3401
<A NAME="RU14906ST-11C">11c</A>
Kaku H.
Ozako S.
Kawamura S.
Takatsu S.
Ishii M.
Tsunoda T.
Heterocycles
2001,
55:
847
<A NAME="RU14906ST-11D">11d</A>
Tsunoda T.
Kaku H.
Nagaku M.
Okuyama E.
Tetrahedron Lett.
1997,
38:
7759
<A NAME="RU14906ST-12">12</A>
The substrate (±)-1 was easily prepared from (±)-lactic acid in four steps. The details of this synthesis
have been reported in ref. 13.
<A NAME="RU14906ST-13">13</A>
Matsumoto K.
Okamoto T.
Otsuka K.
Bull. Chem. Soc. Jpn.
2004,
77:
2051
<A NAME="RU14906ST-14">14</A>
The absolute configuration of 1 was confirmed by comparing the obtained optical rotation value with the reported
value: Lit.
[21]
[α]D
24 -45.9 (c 1.16, CHCl3), S-form.
<A NAME="RU14906ST-15">15</A>
The ee of 1 was determined by HPLC analysis with CHIRALCEL OJ (Daicel Chemical Industries, Ltd.);
eluent, hexane-2-PrOH = 180:1; flow rate, 0.5 mL min-1; t
R = 40 (R) and 50 (S) min.
<A NAME="RU14906ST-16">16</A>
The deracemization did not occur for the reactions using the other TADDOL derivatives
bearing a cyclopentane ring and a dimethyl group [(-)-2,2-tetramethylene- and 2,2-dimethyl-α,α,α′,α′-tetraphenyl-1,3-dioxolan-4,5-dimethanol,
respectively], (+)-1,1′-bi-2-naphthol, and (-)-hydrobenzoin as chiral host compounds
under the same conditions.
<A NAME="RU14906ST-17">17</A>
Although the ee of (S)-1 increased according to the extension of the reaction time (42% ee for one day), the
reaction for over three days gave almost the same result as that of the three-day
reaction. We then decided that the racemizations in all cases were carried out for
three days.
<A NAME="RU14906ST-18">18</A>
The reaction using EtOH, i-PrOH, t-BuOH, and cyclohexane as an alternative mix solvent with H2O gave only the racemate 1.
<A NAME="RU14906ST-19">19</A>
A white solid was obtained by filtration when a sat. NH4Cl aq and EtOAc were not added to the reaction mixture. ESI-TOFMS analysis of the
collected solid showed the peak of [1 + 2 + Na]+ ion (m/z = 721.3 for C46H50O6Na) in the same manner as the case of the optical resolution.
[13]
The peak would mean the construction of the 1:1 inclusion complex (1 and 2) in the reaction mixture.
<A NAME="RU14906ST-20">20</A>
The ee of the products can be improved by a sequential optical resolution using (-)-2 without a base.
[13]
<A NAME="RU14906ST-21">21</A>
Matsumoto K.
Suzuki N.
Ohta H.
Tetrahedron Lett.
1990,
31:
7159