References and Notes
<A NAME="RD33206ST-1">1</A>
Bohlmann F.
Rahtz D.
Chem. Ber.
1957,
90:
2265
<A NAME="RD33206ST-2">2</A>
Bowden K.
Jones ERH.
J. Chem. Soc.
1946,
953
<A NAME="RD33206ST-3">3</A>
Miller RD.
Reiser O.
J. Heterocycl. Chem.
1993,
30:
755
<A NAME="RD33206ST-4">4</A>
Baldwin JE.
Pritchard GJ.
Rathmell RE.
J. Chem. Soc., Perkin Trans. 1
2001,
2906
<A NAME="RD33206ST-5">5</A>
Adlington RM.
Baldwin JE.
Catterick D.
Pritchard GJ.
Tang LT.
J. Chem. Soc., Perkin Trans. 1
2000,
2311
<A NAME="RD33206ST-6">6</A>
Adlington RM.
Baldwin JE.
Catterick D.
Pritchard GJ.
J. Chem. Soc., Perkin Trans. 1
1999,
855
<A NAME="RD33206ST-7A">7a</A>
Bagley MC.
Bashford KE.
Hesketh CL.
Moody CJ.
J. Am. Chem. Soc.
2000,
122:
3301
<A NAME="RD33206ST-7B">7b</A>
Moody CJ.
Bagley MC.
Chem. Commun.
1998,
2049
<A NAME="RD33206ST-7C">7c</A>
Bagley MC.
Dale JW.
Merritt EA.
Xiong X.
Chem. Rev.
2005,
105:
685
<A NAME="RD33206ST-8">8</A>
Davis JM.
Truong A.
Hamilton AD.
Org. Lett.
2005,
7:
5405
<A NAME="RD33206ST-9">9</A>
Schroeder E.
Lehmann M.
Boettcher I.
Eur. J. Med. Chem.
1979,
14:
309
<A NAME="RD33206ST-10">10</A>
Bagley MC.
Dale JW.
Ohnesorge M.
Xiong X.
Bower J.
J. Comb. Chem.
2003,
5:
41
<A NAME="RD33206ST-11">11</A>
Bashford KE.
Burton MB.
Cameron S.
Cooper AL.
Hogg RD.
Kane PD.
MacManus DA.
Matrunola CA.
Moody CJ.
Robertson AAB.
Warne MR.
Tetrahedron Lett.
2003,
44:
1627
<A NAME="RD33206ST-12">12</A>
Bagley MC.
Hughes DD.
Lubinu MC.
Merritt EA.
Taylor PH.
Tomkinson NCO.
QSAR Comb. Sci.
2004,
23:
859
<A NAME="RD33206ST-13">13</A>
Bagley MC.
Dale JW.
Bower J.
Synlett
2001,
1149
<A NAME="RD33206ST-14">14</A>
Bagley MC.
Dale JW.
Hughes DD.
Ohnesorge M.
Phillips NG.
Bower J.
Synlett
2001,
1523
<A NAME="RD33206ST-15">15</A>
Bagley MC.
Lunn R.
Xiong X.
Tetrahedron Lett.
2002,
43:
8331
<A NAME="RD33206ST-16">16</A>
Bagley MC.
Chapaneri K.
Xiong X.
Tetrahedron Lett.
2004,
45:
6121
<A NAME="RD33206ST-17">17</A>
Bagley MC.
Dale JW.
Bower J.
Chem. Commun.
2002,
1682
<A NAME="RD33206ST-18">18</A>
Bagley MC.
Brace C.
Dale JW.
Ohnesorge M.
Phillips NG.
Xiong X.
Bower J.
J. Chem. Soc., Perkin Trans. 1
2002,
1663
<A NAME="RD33206ST-19">19</A>
Bagley MC.
Xiong X.
Org. Lett.
2004,
6:
3401
<A NAME="RD33206ST-20">20</A>
Bagley MC.
Glover C.
Merritt EA.
Xiong X.
Synlett
2004,
811
<A NAME="RD33206ST-21">21</A>
Bagley MC.
Glover C.
Chevis D.
Synlett
2005,
649
<A NAME="RD33206ST-22">22</A>
Bagley MC.
Hughes DD.
Taylor PH.
Synlett
2003,
259
<A NAME="RD33206ST-23">23</A>
Bagley MC.
Hughes DD.
Lloyd R.
Powers VEC.
Tetrahedron Lett.
2001,
42:
6585
<A NAME="RD33206ST-24">24</A>
Hughes DD.
Bagley MC.
Synlett
2002,
1332
<A NAME="RD33206ST-25">25</A>
Engelmann A.
Kirmse W.
Chem. Ber.
1973,
106:
3092
<A NAME="RD33206ST-26">26</A>
Coispeau G.
Elguero J.
Bull. Soc. Chim. Fr.
1970,
2717
<A NAME="RD33206ST-27">27</A>
Strauss CR.
Trainor RW.
Aust. J. Chem.
1995,
48:
1665
<A NAME="RD33206ST-28">28</A>
Roberts BA.
Strauss CR.
Acc. Chem. Res.
2005,
38:
653
<A NAME="RD33206ST-29A">29a</A>
Cablewski T.
Faux AF.
Strauss CR.
J. Org. Chem.
1994,
59:
3408
<A NAME="RD33206ST-29B">29b</A>
Kabza KG.
Chapados BR.
Gestwicki JE.
McGrath JL.
J. Org. Chem.
2000,
65:
1210
<A NAME="RD33206ST-29C">29c</A>
Khadilkar BM.
Madyar VR.
Org. Process Res. Dev.
2001,
5:
452
<A NAME="RD33206ST-29D">29d</A>
Esveld E.
Chemat F.
van Haveren J.
Chem. Eng. Technol.
2000,
23:
279
<A NAME="RD33206ST-29E">29e</A>
Esveld E.
Chemat F.
van Haveren J.
Chem. Eng. Technol.
2000,
23:
429
<A NAME="RD33206ST-29F">29f</A>
Shieh W.-C.
Dell S.
Repi
O.
Tetrahedron Lett.
2002,
43:
5607
<A NAME="RD33206ST-29G">29g</A>
Baxendale IR.
Pitts MR.
Chim. Oggi
2006,
24:
41
<A NAME="RD33206ST-30">30</A>
Bagley MC.
Jenkins RL.
Lubinu MC.
Mason C.
Wood R.
J. Org. Chem.
2005,
70:
7003
<A NAME="RD33206ST-31">31</A>
All pyrazoles exhibited satisfactory characterization data, including 1H NMR, 13C NMR, IR, MS and HRMS.
<A NAME="RD33206ST-32">32</A>
Qualitative NOESY effects were seen for 1,3-disubstituted pyrazoles (Table
[4]
, entries 1, 6 and 8) between the aryl ortho-methine resonances and the pyrazole methine signals, the latter of which were well
separated (see ref. 3) in chemical shift in the 1H NMR spectrum of both pyrazole regioisomers. The 5-ethyl-trisubstituted pyrazole
(entry 4) showed NOESY effects between the aryl ortho-methine resonances and the methylene protons.
<A NAME="RD33206ST-33">33</A>
1,3-Diphenylpyrazole (3): mp 81-83 °C (lit.35 mp 84-85 °C); R
f
= 0.61 (CH2Cl2). HRMS: m/z [MH+] calcd for C15H13N2: 221.1073; found: 221.1074 [MH+]. IR (nujol): νmax = 1598, 1526, 1504, 1360, 1264, 1114, 1061, 1046, 954, 755, 686 cm-1. UV (CH2Cl2): λmax (ε) = 284 (17959), 224 (6189) nm. 1H NMR (400 MHz, CDCl3): δ = 7.89 (1 H, d, J = 2.5 Hz, 5-H), 7.85 (2 H, m, PhH), 7.71 (2 H, m, PhH), 7.38 (4 H, PhH), 7.24 (2
H, m, PhH), 6.71 (1 H, d, J = 2.5 Hz, 4-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 153.3 (C), 140.6 (C), 133.5 (C), 129.8 (CH), 129.1 (CH), 128.5 (CH), 128.4
(CH), 126.7 (CH), 126.2 (CH), 119.5 (CH), 105.4 (CH) ppm. MS (APCI): m/z (%) = 221 (100) [MH+], 194 (5), 118 (10).
<A NAME="RD33206ST-34">34</A>
1,5-Diphenylpyrazole (4): mp 52-55 °C (lit.35 mp 55-56 °C); R
f
= 0.18 (CH2Cl2). HRMS: m/z [MH+] calcd for C15H13N2: 221.1073; found: 221.1072 [MH+]. IR (nujol): νmax = 1596, 1541, 1502, 1450, 1385, 1224, 1158, 1130, 1068, 960, 761, 695 cm-1. UV (CH2Cl2): λmax (ε) = 252 (14493). 1H NMR (400 MHz, CDCl3): δ = 7.66 (1 H, d, J = 1.5 Hz, 3-H), 7.28-7.22 (8 H, PhH), 7.19-7.15 (2 H, m, PhH), 6.45 (1 H, d, J = 1.5 Hz, 4-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 143.0 (C), 140.3 (CH), 140.1 (C), 130.6 (CH), 128.9 (CH), 128.8 (CH), 128.5
(CH), 128.2 (CH), 127.4 (CH), 125.2 (CH), 107.9 (CH) ppm. MS (APCI): m/z (%) = 221 (100) [MH+], 194 (10), 152 (5), 103 (5).
<A NAME="RD33206ST-35">35</A>
Auwers K.
Schmidt W.
Ber. Dtsch. Chem. Ges.
1925,
58:
528