References and Notes
<A NAME="RG01407ST-1">1</A> For a special issue in environmental chemistry, see: Chem. Rev.
1995,
95:
3
<A NAME="RG01407ST-2">2</A>
Trost BM.
Acc. Chem. Res.
2002,
35:
695
<A NAME="RG01407ST-3">3</A>
Weber L.
Illgen M.
Almstetter M.
Synlett
1999,
366
<A NAME="RG01407ST-4">4</A>
Wender PA.
Handy ST.
Wright DL.
Chem. Ind.
1997,
19:
765
<A NAME="RG01407ST-5A">5a</A>
Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
<A NAME="RG01407ST-5B">5b</A>
Ramon DJ.
Yus M.
Angew. Chem. Int. Ed.
2005,
44:
1602
<A NAME="RG01407ST-5C">5c</A>
Dömling A.
Chem. Rev.
2006,
106:
17
<A NAME="RG01407ST-6A">6a</A>
Domino Reactions in Organic Synthesis
Tietze LF.
Brasche G.
Gericke KM.
Wiley-VCH;
Weinheim:
2006.
For some representative reviews, see:
<A NAME="RG01407ST-6B">6b</A>
Tietze LF.
Lieb ME.
Curr. Opin. Chem. Biol.
1998,
2:
363
<A NAME="RG01407ST-6C">6c</A>
Rodriguez J.
Synlett
1999,
505
<A NAME="RG01407ST-7A">7a</A>
Schreiber SL.
Science
2000,
287:
1964
<A NAME="RG01407ST-7B">7b</A>
Wender PA.
Gamber GG.
Hubbard RD.
Pham SM.
Zhang L.
J. Am. Chem. Soc.
2005,
127:
2836
<A NAME="RG01407ST-7C">7c</A>
Vugts DJ.
Koningstein MM.
Schmitz RF.
de Kanter FJJ.
Groen MB.
Orru RVA.
Chem. Eur. J.
2006,
12:
7178
<A NAME="RG01407ST-8">8</A>
Tucker JL.
Org. Process Res. Dev.
2006,
10:
315
For recent reviews on the utilization of 1,3-dicarbonyl derivatives in MCRs, see:
<A NAME="RG01407ST-9A">9a</A>
Simon C.
Constantieux T.
Rodriguez J.
Eur. J. Org. Chem.
2004,
4957
<A NAME="RG01407ST-9B">9b</A>
Liéby-Muller F.
Simon C.
Constantieux T.
Rodriguez J.
QSAR Comb. Sci.
2006,
25:
432
<A NAME="RG01407ST-10A">10a</A>
Peresada VP.
Medvedev OS.
Likhosherstov AM.
Skoldinov AP.
Khim. Farm. Zh.
1987,
21:
1054
<A NAME="RG01407ST-10B">10b</A>
Katritzky AR.
Jain R.
Xu Y.-J.
Seel PJ.
J. Org. Chem.
2002,
67:
8220
<A NAME="RG01407ST-11A">11a</A> For a recent review, see:
Hoffmann H.
Lindel T.
Synthesis
2003,
1753
<A NAME="RG01407ST-11B">11b</A> See also:
Davis FA.
Deng J.
Org. Lett.
2005,
7:
621
<A NAME="RG01407ST-12A">12a</A>
Seredenin SB,
Voronina TA,
Likhosherstov AM,
Peresada VP,
Molodavkin GL, and
Halikas JA. inventors; US Patent 5,378,846.
<A NAME="RG01407ST-12B">12b</A>
Negoro T.
Murata M.
Ueda S.
Fujitani B.
Ono Y.
Kuromiya A.
Komiya M.
Suzuki K.
Matsumoto J.
J. Med. Chem.
1998,
41:
4118
<A NAME="RG01407ST-13A">13a</A>
Simon C.
Peyronel JF.
Rodriguez J.
Org. Lett.
2001,
3:
2145
<A NAME="RG01407ST-13B">13b</A>
Simon C.
Liéby-Muller F.
Peyronel J.-F.
Constantieux T.
Rodriguez J.
Synlett
2003,
2301
<A NAME="RG01407ST-13C">13c</A>
Liéby-Muller F.
Constantieux T.
Rodriguez J.
J. Am. Chem. Soc.
2005,
127:
17176
<A NAME="RG01407ST-13D">13d</A>
Liéby-Muller F.
Simon C.
Imhof K.
Constantieux T.
Rodriguez J.
Synlett
2006,
1671
<A NAME="RG01407ST-14A">14a</A>
Pictet A.
Spengler T.
Ber. Dtsch. Chem. Ges.
1911,
44:
2030
<A NAME="RG01407ST-14B">14b</A> For a review, see:
Cox ED.
Cook JM.
Chem. Rev.
1995,
95:
1797
<A NAME="RG01407ST-15">15</A>
Jirkovsky I.
Baudy R.
Synthesis
1981,
481
<A NAME="RG01407ST-16">16</A>
Typical Procedure for the Synthesis of Compounds 4
To a 50 mL two-necked round-bottomed flask flushed with Ar, equipped with a magnetic
stirring bar and a reflux condenser, were added toluene freshly distilled over CaH2 (25 mL), commercially available inactivated 4 Å MS (6 g), β-ketoester 1 (200 mg, 1.0 equiv), freshly distilled acrolein (2, 1.2 equiv), and amine 3 (1.0 equiv). The heterogeneous mixture was stirred at reflux under Ar for 24 h. The
solution was filtered through a short pad of Celite®, which was thoroughly washed with toluene. The solvent was evaporated under reduced
pressure to afford crude compound 4 with good chemical purity. An analytical sample was isolated by flash chromatography
over silica gel.
Selected Physical Data for Compounds 4h
Yellow oil; R
f
= 0.57 (PE-EtOAc, 3:1). IR (liquid film): ν = 2924, 1735, 1654, 1156, 1094 cm-1. MS (ESI): m/z (rel. intensity, %) = 392 [M + H]+ (13.0), 273 (100), 120 (10.7). 1H NMR (300.13 MHz, CDCl3): δ = 7.23 (5 H, m), 6.50 (1 H, m), 6.16 (1 H, dd, J = 3.6, 2.7 Hz), 5.85 (1 H, t, J = 1.5 Hz), 4.90 (1 H, dd, J = 4.7, 2.1 Hz), 4.10 (2 H, m), 4.03 (1 H, m), 3.94 (1 H, br dd, J = 11.6, 3.0 Hz), 3.68 (1 H, d, J = 13.3 Hz), 3.58 (1 H, dd, J = 11.6, 2.8 Hz), 3.54 (1 H, br dd, J = 12.0, 3.5 Hz), 3.47 (1 H, br dd, J = 15.3, 4.7 Hz), 3.42 (1 H, d, J = 13.3 Hz), 3.10 (1 H, dd, J = 11.2, 1.2 Hz), 2.92 (1 H, td, J = 11.9, 4.1 Hz), 2.91 (1 H, dd, J = 15.3, 2.0 Hz), 2.30 (1 H, dt, J = 13.0, 3.1 Hz), 2.19 (1 H, d, J = 11.2 Hz), 2.12 (1 H, dq, J = 13.5, 3.1 Hz), 1.70 (1 H, tdd, J = 13.9, 11.3, 3.3 Hz), 1.48 (1 H, td, J = 13.5, 3.6 Hz), 1.13 (3 H, t, J = 7.2 Hz). 13C NMR (75.47 MHz, CDCl3): δ = 173.9, 144.2, 138.5, 130.7, 128.5 (2 C), 128.0 (2 C), 126.8, 118.0, 108.1,
101.7, 101.4, 61.5, 60.6, 60.5, 57.9, 53.5, 48.8, 45.1, 44.4, 31.2, 28.9, 14.0.
<A NAME="RG01407ST-17">17</A>
The stereochemistry of the products has been fully studied by 2D NMR analysis which
is part of F. Liéby-Muller’s PhD Thesis, and details will be published in due course.
<A NAME="RG01407ST-18">18</A>
Although fully reproducible, the origin of the total diastereoselectivity observed
in the case of 1h is not yet clear, and further experimentations and calculations are in progress and
will be reported in due course.
<A NAME="RG01407ST-19">19</A>
Crystallographic data for the structure reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC
264343. Copies of the data can be obtained free of charge on application to CCDC,
12 Union Road, Cambridge CB21EZ, UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RG01407ST-20">20</A>
Michael adduct 5h has been prepared by reaction of 1h with acrolein (2), in the presence of Dowex resins. When this 1,5-dicarbonyl compound reacts with
amine 3, the same product (4h) is obtained as in the one-pot sequence.
<A NAME="RG01407ST-21">21</A>
Matoba K.
Shibata M.
Yamazaki T.
Chem. Pharm. Bull.
1982,
30:
1718
<A NAME="RG01407ST-22">22</A>
The presence of MS is crucial since no reaction takes place under simple azeotropic
distillation or in the presence of TMOF as dehydrating agent. Moreover, some other
heterogeneous catalysts such as basic or acidic alumina, montmorillonite K10 or Dowex
ion-exchange resin have been tested in this sequence with very lower efficiency, leading
sometimes to decomposition or to the desired product in yields not exceeding 20%.