Horm Metab Res 2007; 39(5): 314-321
DOI: 10.1055/s-2007-976539
Special Topics Revisited

© Georg Thieme Verlag KG Stuttgart · New York

Endocrinology of Adipose Tissue - An Update

P. Fischer-Posovszky 1 , M. Wabitsch 1 , Z. Hochberg 2
  • 1Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
  • 2Meyer Children's Hospital, Rambam Medical Center, and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
Further Information

Publication History

received 8. 1. 2007

accepted 14. 2. 2007

Publication Date:
29 May 2007 (online)


Adipose tissue is the body's largest repository of energy and it plays an important role in total energy homeostasis. Moreover, it is now well recognized as an endocrine organ. A wide range of different factors including complex proteins as well as fatty acids, prostaglandins, and steroids are either synthesized de novo or converted in adipose tissue and released into the blood stream. These so-called adipokines contribute to the development of obesity-related disorders, particularly type-2 diabetes (T2D) and cardiovascular disease. In this review, we present an overview on the endocrine functions of adipose tissue with a special focus on discoveries reported within the past 5 years.


  • 1 Ahima RS. Adipose tissue as an endocrine organ.  Obesity (Silver Spring). 2006;  14 ((Suppl 5)) 242S-249S
  • 2 Kershaw EE, Flier JS. Adipose tissue as an endocrine organ.  J Clin Endocrinol Metab. 2004;  89 2548-2556
  • 3 Flier JS. Obesity wars: molecular progress confronts an expanding epidemic.  Cell. 2004;  116 337-350
  • 4 Hauner H, Hochberg Z. Endocrinology of adipose tissue.  Horm Metab Res. 2002;  34 605-606
  • 5 Ailhaud G, Hauner H. Development of white adipose tissue. In: Bray, GA, Bouchard, C (eds). Handbook of obesity 2nd Ed. New York: Marcel Dekker 2004: 481-514
  • 6 Fischer-Posovszky P, Tornqvist H, Debatin KM, Wabitsch M. Inhibition of death-receptor mediated apoptosis in human adipocytes by the insulin-like growth factor I (IGF-I)/IGF-I receptor autocrine circuit.  Endocrinology. 2004;  145 1849-1859
  • 7 Prins JB, O’Rahilly S. Regulation of adipose cell number in man.  Clin Sci (Lond). 1997;  92 3-11
  • 8 Della-Fera MA, Qian H, Baile CA. Adipocyte apoptosis in the regulation of body fat mass by leptin.  Diabetes Obes Metab. 2001;  3 299-310
  • 9 Wabitsch M. The acquisition of obesity: insights from cellular and genetic research.  Proc Nutr Soc. 2000;  59 325-330
  • 10 Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium.  J Clin Invest. 1989;  84 1663-1670
  • 11 Petruschke T, Hauner H. Tumor necrosis factor-alpha prevents the differentiation of human adipocyte precursor cells and causes delipidation of newly developed fat cells.  J Clin Endocrinol Metab. 1993;  76 742-747
  • 12 Lofgren P, Andersson I, Adolfsson B, Leijonhufvud BM, Hertel K, Hoffstedt J, Arner P. Long-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state.  J Clin Endocrinol Metab. 2005;  90 6207-6213
  • 13 van Harmelen V, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I, Hauner H. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women.  Int J Obes Relat Metab Disord. 2003;  27 889-895
  • 14 Bluher M, Wilson-Fritch L, Leszyk J, Laustsen PG, Corvera S, Kahn CR. Role of insulin action and cell size on protein expression patterns in adipocytes.  J Biol Chem. 2004;  279 31902-31909
  • 15 Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role.  Best Pract Res Clin Endocrinol Metab. 2005;  19 471-482
  • 16 Farnier C, Krief S, Blache M, Diot-Dupuy F, Mory G, Ferre P, Bazin R. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway.  Int J Obes Relat Metab Disord. 2003;  27 1178-1186
  • 17 Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, Gabrielsson BG, Levin M, Sjogren A, Rudemo M, Lystig TC, Carlsson B, Carlsson LM, Lonn M. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression.  Faseb J. 2006;  20 1540-1542
  • 18 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.  Science. 1993;  259 87-91
  • 19 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr. AW. Obesity is associated with macrophage accumulation in adipose tissue.  J Clin Invest. 2003;  112 1796-1808
  • 20 Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, Bouloumie A. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes.  Diabetes. 2004;  53 1285-1292
  • 21 Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumie A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clement K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss.  Diabetes. 2005;  54 2277-2286
  • 22 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.  J Clin Invest. 2003;  112 1821-1830
  • 23 Manco M, Fernandez-Real JM, Equitani F, Vendrell J, Valera Mora ME, Nanni G, Tondolo V, Calvani M, Ricart W, Castagneto M, Mingrone G. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women.  J Clin Endocrinol Metab. 2006;  , in press
  • 24 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432
  • 25 Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.  Cell. 1996;  84 491-495
  • 26 Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice.  Nature. 1996;  379 632-635
  • 27 Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R.  Cell. 1995;  83 1263-1271
  • 28 Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O’Rahilly S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency.  J Clin Invest. 2002;  110 1093-1103
  • 29 Zelissen PM, Stenlof K, Lean ME, Fogteloo J, Keulen ET, Wilding J, Finer N, Rossner S, Lawrence E, Fletcher C, McCamish M. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial.  Diabetes Obes Metab. 2005;  7 755-761
  • 30 Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3.  Nat Med. 2004;  10 734-738
  • 31 Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity.  Nat Med. 2004;  10 739-743
  • 32 Gorden P, Park JY. The clinical efficacy of the adipocyte-derived hormone leptin in metabolic dysfunction.  Arch Physiol Biochem. 2006;  112 114-118
  • 33 Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery.  Recent Prog Horm Res. 2004;  59 305-331
  • 34 Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions.  Int J Obes Relat Metab Disord. 2002;  26 1407-1433
  • 35 Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin-the classical, resistin-the controversical, adiponectin-the promising, and more to come.  Best Pract Res Clin Endocrinol Metab. 2005;  19 525-546
  • 36 Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding.  Science. 2004;  304 108-110
  • 37 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 26746-26749
  • 38 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10697-10703
  • 39 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 40 Shapiro L, Scherer PE. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor.  Curr Biol. 1998;  8 335-338
  • 41 Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans.  Endocrinology. 2004;  145 2273-2282
  • 42 Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.  Trends Endocrinol Metab. 2002;  13 84-89
  • 43 Crouch E, Persson A, Chang D, Heuser J. Molecular structure of pulmonary surfactant protein D (SP-D).  J Biol Chem. 1994;  269 17311-17319
  • 44 McCormack FX, Pattanajitvilai S, Stewart J, Possmayer F, Inchley K, Voelker DR. The Cys6 intermolecular disulfide bond and the collagen-like region of rat SP-A play critical roles in interactions with alveolar type II cells and surfactant lipids.  J Biol Chem. 1997;  272 27971-27979
  • 45 Wong GW, Wang J, Hug C, Tsao TS, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs.  Proc Natl Acad Sci USA. 2004;  101 10302-10307
  • 46 Wang Y, Xu A, Knight C, Xu LY, Cooper GJ. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity.  J Biol Chem. 2002;  277 19521-19529
  • 47 Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity.  J Biol Chem. 2003;  278 9073-9085
  • 48 Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel P, Kimura S, Nagai R, Kadowaki T. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin.  J Biol Chem. 2003;  278 40352-40363
  • 49 Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors.  Endocr Rev. 2005;  26 439-451
  • 50 Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.  Proc Natl Acad Sci USA. 2001;  98 2005-2010
  • 51 Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.  Nature. 2003;  423 762-769
  • 52 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 53 Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome.  Arterioscler Thromb Vasc Biol. 2004;  24 29-33
  • 54 Yamamoto Y, Hirose H, Saito I, Nishikai K, Saruta T. Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population.  J Clin Endocrinol Metab. 2004;  89 87-90
  • 55 Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Adiponectin and protection against type 2 diabetes mellitus.  Lancet. 2003;  361 226-228
  • 56 Nakashima R, Kamei N, Yamane K, Nakanishi S, Nakashima A, Kohno N. Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-americans.  J Clin Endocrinol Metab. 2006;  91 3873-3877
  • 57 Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, Imai Y, Nagai R, Kadowaki T. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome.  Diabetes Care. 2006;  29 1357-1362
  • 58 Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster.  Diabetes. 2006;  55 249-259
  • 59 Fisher FF, Trujillo ME, Hanif W, Barnett AH, McTernan PG, Scherer PE, Kumar S. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males.  Diabetologia. 2005;  48 1084-1087
  • 60 Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M, Machicao F, Haring H. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes.  Diabetes. 2002;  51 37-41
  • 61 Vasseur F, Lepretre F, Lacquemant C, Froguel P. The genetics of adiponectin.  Curr Diab Rep. 2003;  3 151-158
  • 62 Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.  J Clin Invest. 2006;  116 1784-1792
  • 63 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 64 Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 947-953
  • 65 Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY, Liu F, Dong LQ. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function.  Nat Cell Biol. 2006;  8 516-523
  • 66 Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function.  J Clin Endocrinol Metab. 2004;  89 2563-2568
  • 67 Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.  Circulation. 1999;  100 2473-2476
  • 68 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.  Circulation. 2000;  102 1296-1301
  • 69 Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.  Circulation. 2001;  103 1057-1063
  • 70 Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell.  Circulation. 2002;  105 2893-2898
  • 71 Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity.  Nat Rev Immunol. 2006;  6 772-783
  • 72 Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes.  Biochem Biophys Res Commun. 2004;  323 630-635
  • 73 Yamaguchi N, Argueta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, Hanazawa S, Yamashita Y. Adiponectin inhibits Toll-like receptor family-induced signaling.  FEBS Lett. 2005;  579 6821-6826
  • 74 Yokota T, Meka CS, Kouro T, Medina KL, Igarashi H, Takahashi M, Oritani K, Funahashi T, Tomiyama Y, Matsuzawa Y, Kincade PW. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells.  J Immunol. 2003;  171 5091-5099
  • 75 Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.  Nature. 2001;  409 729-733
  • 76 Gnudi L, Shepherd PR, Kahn BB. Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: implications for nutrient partitioning.  Proc Nutr Soc. 1996;  55 191-199
  • 77 Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.  Nature. 2005;  436 356-362
  • 78 Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein.  Embo J. 1999;  18 4633-4644
  • 79 Kahn BB. Dietary regulation of glucose transporter gene expression: tissue specific effects in adipose cells and muscle.  J Nutr. 1994;  124 1289-1295
  • 80 Basualdo CG, Wein EE, Basu TK. Vitamin A (retinol) status of first nation adults with non-insulin-dependent diabetes mellitus.  J Am Coll Nutr. 1997;  16 39-45
  • 81 Abahusain MA, Wright J, Dickerson JW, de Vol EB. Retinol, alpha-tocopherol and carotenoids in diabetes.  Eur J Clin Nutr. 1999;  53 630-635
  • 82 Munkhtulga L, Nakayama K, Utsumi N, Yanagisawa Y, Gotoh T, Omi T, Kumada M, Erdenebulgan B, Zolzaya K, Lkhagvasuren T, Iwamoto S. Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia.  Hum Genet. 2006;  , in press
  • 83 Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.  N Engl J Med. 2006;  354 2552-2563
  • 84 Cho YM, Youn BS, Lee H, Lee N, Min SS, Kwak SH, Lee HK, Park KS. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes.  Diabetes Care. 2006;  29 2457-2461
  • 85 Janke J, Engeli S, Boschmann M, Adams F, Bohnke J, Luft FC, Sharma AM, Jordan J. Retinol-binding protein 4 in human obesity.  Diabetes. 2006;  55 2805-2810
  • 86 Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.  Science. 2005;  307 426-430
  • 87 Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor.  Mol Cell Biol. 1994;  14 1431-1437
  • 88 Yang H, Lavu S, Sinclair DA. Nampt/PBEF/Visfatin: A regulator of mammalian health and longevity?.  Exp Gerontol. 2006;  41 718-726
  • 89 Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis.  Eur J Immunol. 2002;  32 3225-3234
  • 90 Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme.  Nat Struct Mol Biol. 2006;  13 661-662
  • 91 Kralisch S, Klein J, Lossner U, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes.  J Endocrinol. 2005;  185 R1-R8
  • 92 Kralisch S, Klein J, Lossner U, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes.  Am J Physiol Endocrinol Metab. 2005;  289 E586-E590
  • 93 Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome.  Science. 2001;  294 2166-2170
  • 94 Bahr V, Pfeiffer AF, Diederich S. The metabolic syndrome X and peripheral cortisol synthesis.  Exp Clin Endocrinol Diabetes. 2002;  110 313-318
  • 95 Haider DG, Mittermayer F, Schaller G, Artwohl M, Baumgartner-Parzer SM, Prager G, Roden M, Wolzt M. Free fatty acids normalize a rosiglitazone-induced visfatin release.  Am J Physiol Endocrinol Metab. 2006;  , in press
  • 96 Haider DG, Schaller G, Kapiotis S, Maier C, Luger A, Wolzt M. The release of the adipocytokine visfatin is regulated by glucose and insulin.  Diabetologia. 2006;  49 1909-1914
  • 97 Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ, Lee YJ. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus.  J Clin Endocrinol Metab. 2006;  91 295-299
  • 98 Dogru T, Sonmez A, Tasci I, Bozoglu E, Yilmaz MI, Genc H, Erdem G, Gok M, Bingol N, Kilic S, Ozgurtas T, Bingol S. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance.  Diabetes Res Clin Pract. 2006;  , in press
  • 99 Hammarstedt A, Pihlajamaki J, Rotter Sopasakis V, Gogg S, Jansson PA, Laakso M, Smith U. Visfatin is an adipokine, but it is not regulated by thiazolidinediones.  J Clin Endocrinol Metab. 2006;  91 1181-1184
  • 100 Berndt J, Kloting N, Kralisch S, Kovacs P, Fasshauer M, Schon MR, Stumvoll M, Bluher M. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans.  Diabetes. 2005;  54 2911-2916
  • 101 Pagano C, Pilon C, Olivieri M, Mason P, Fabris R, Serra R, Milan G, Rossato M, Federspil G, Vettor R. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans.  J Clin Endocrinol Metab. 2006;  91 3165-3170
  • 102 Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding.  J Clin Endocrinol Metab. 2006;  91 1578-1581
  • 103 Haider DG, Pleiner J, Francesconi M, Wiesinger GF, Muller M, Wolzt M. Exercise training lowers plasma visfatin concentrations in patients with type 1 diabetes.  J Clin Endocrinol Metab. 2006;  , in press
  • 104 Bottcher Y, Teupser D, Enigk B, Berndt J, Kloting N, Schon MR, Thiery J, Bluher M, Stumvoll M, Kovacs P. Genetic variation in the visfatin gene (PBEF1) and its relation to glucose metabolism and fat-depot-specific messenger ribonucleic acid expression in humans.  J Clin Endocrinol Metab. 2006;  91 2725-2731
  • 105 Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, Bouloumie A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin.  Diabetologia. 2006;  49 744-747
  • 106 Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P. Increased adipose angiotensinogen gene expression in human obesity.  Obes Res. 2000;  8 337-341
  • 107 Umemura S, Nyui N, Tamura K, Hibi K, Yamaguchi S, Nakamaru M, Ishigami T, Yabana M, Kihara M, Inoue S, Ishii M. Plasma angiotensinogen concentrations in obese patients.  Am J Hypertens. 1997;  10 629-633
  • 108 Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, Meneton P, Teboul M. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation.  Faseb J. 2001;  15 2727-2729
  • 109 Skurk T, Lee YM, Hauner H. Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture.  Hypertension. 2001;  37 1336-1340
  • 110 Skurk T, van Harmelen V, Blum WF, Hauner H. Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2-dependent pathway.  Obes Res. 2005;  13 969-973
  • 111 Skurk T, van Harmelen V, Hauner H. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB.  Arterioscler Thromb Vasc Biol. 2004;  24 1199-1203
  • 112 Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress.  Curr Hypertens Rep. 2006;  8 191-198
  • 113 Leiter LA, Lewanczuk RZ. Of the renin-angiotensin system and reactive oxygen species Type 2 diabetes and angiotensin II inhibition.  Am J Hypertens. 2005;  18 121-128
  • 114 Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, Teboul M, Massiera F, Sharma AM. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome?.  Int J Biochem Cell Biol. 2003;  35 807-825
  • 115 Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes.  Endocrinology. 2006;  147 5340-5351
  • 116 Fasshauer M, Klein J, Lossner U, Paschke R. Interleukin (IL)-6 mRNA expression is stimulated by insulin, isoproterenol, tumour necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes.  Horm Metab Res. 2003;  35 147-152
  • 117 Do MS, Nam SY, Hong SE, Kim KW, Duncan JS, Beattie JH, Trayhurn P. Metallothionein gene expression in human adipose tissue from lean and obese subjects.  Horm Metab Res. 2002;  34 348-351
  • 118 Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance.  J Clin Invest. 2006;  116 1793-1801
  • 119 Boucher J, Castan-Laurell I, Daviaud D, Guigne C, Buleon M, Carpene C, Saulnier-Blache JS, Valet P. Adipokine expression profile in adipocytes of different mouse models of obesity.  Horm Metab Res. 2005;  37 761-767
  • 120 Janke J, Engeli S, Gorzelniak K, Feldpausch M, Heintze U, Bohnke J, Wellner M, Herse F, Lassalle P, Luft FC, Sharma AM. Adipose tissue and circulating endothelial cell specific molecule-1 in human obesity.  Horm Metab Res. 2006;  38 28-33
  • 121 Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance.  Int J Obes Relat Metab Disord. 2003;  27 ((Suppl 3)) S49-S52
  • 122 Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307).  J Biol Chem. 2000;  275 9047-9054
  • 123 Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance.  Nature. 2002;  420 333-336
  • 124 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB.  Nat Med. 2005;  11 183-190
  • 125 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity.  Cell. 2006;  124 783-801
  • 126 Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signalling.  Science. 2000;  289 950-953
  • 127 Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald OA. Wnt10b inhibits development of white and brown adipose tissues.  J Biol Chem. 2004;  279 35503-35509
  • 128 Wright WS, Longo KA, Dolinsky VW, Gerin I, Kang S, Bennett CN, Chiang SH, Prestwich TC, Gress C, Burant CF, Susulic VS, MacDougald OA. Wnt10b inhibits obesity in ob/ob and agouti mice.  Diabetes. 2007;  56 295-303
  • 129 Christodoulides C, Scarda A, Granzotto M, Milan G, Dalla Nora E, Keogh J, De Pergola G, Stirling H, Pannacciulli N, Sethi JK, Federspil G, Vidal-Puig A, Farooqi IS, O’Rahilly S, Vettor R. WNT10B mutations in human obesity.  Diabetologia. 2006;  49 678-684
  • 130 Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes.  J Biol Chem. 2006;  281 9507-9516
  • 131 Campfield LA, Smith FJ, Burn P. The OB protein (leptin) pathway - a link between adipose tissue mass and central neural networks.  Horm Metab Res. 1996;  28 619-632


Prof. Dr. M. Wabitsch

Division of Pediatric Endocrinology and Diabetes

Department of Pediatrics and Adolescent Medicine

University of Ulm

Eythstr 24

89075 Ulm


Phone: +49/731/5002 77 15

Fax: +49/731/5002 67 14

Email: martin.wabitsch@uniklinik-ulm.de