Zusammenfassung
Die Evozierten Potenziale (EP) sind in Praxis und Klinik lange etablierte Methoden.
Zur Durchführung wurden Standards entwickelt, die Mindestanforderungen festlegen.
Für die Qualitäts-sicherung in der Routine ist zudem die Kenntnis häufiger Fehler
in der Ableitung und Interpretation entscheidend. Im Ersten Teil werden deshalb häufige
Fehlerquellen und wie sie zu vermeiden sind besprochen, sowie ein Vorschlag für die
Indikationen zu den Untersuchungen. Im Zweiten Teil werden neure Methoden der Evozierten
Potenziale vorgestellt und ein Ausblick in ihrer klinischen Anwendung gegeben.
Abstract
Evoked potentials (EPs) are well established in the field of clinical neurology. Standards
defining the mode of application have been developed. In order to control the quality,
possible errors in the measurement of EPs and in the interpretation of results have
to be known. In the first part of this article, common mistakes are described and
how to avoid them. A tendative list of indications to measure EPs is presented. In
the second part, “new” methods are presented together with their possible applications
in the clinical field.
Schlüsselwörter
Evozierte Potenziale - Qualitätssicherung - klinische Anwendung
Key words
evoked potentials - quality assurance - clinical use
Literatur
- 1
Buchner H, Claßen J, Haupt WF, Kunesch E, Lowitzsch K, Milnik V, Paulus W, Stöhr M.
Empfehlungen für die Ausbildung „Evozierte Potentiale”- Mindestanforderungen für die
Durchführung.
Klin Neurophysiol.
2002;
33
223-229
- 2
Deuschl G, Eisen A.
Recommendations for the practice of clinical neurophysiology Electroenceph.
Clin Neurophysiol.
1999;
, Supp 52
- 3 Buchner H, Noth J.
Evozierte Potenziale, Neurovegetative Diagnostik Okolographie. Thieme Stuttgart 2005
- 4 Jewett DL.
Auditory evoked Potentials: overview of the field (and shoreline) - 1986. In: Barber C, Blum Th. Evoked Potentials III. Butterworths Bosten 1987
- 5
Green JB, Nelson AV, Michael D.
Digital zero-phase-shift filtering of short-latency somatosensory evoked potentials.
Electroencephalogr Clin Neurophysiol.
1986;
63
384-388
- 6
Emerson RG, Sgro JA, Pedley TA, Hauser A.
State-dependent changes in the N20 component of the median nerve somatosensory evoked
potential.
Neurology.
1988;
38
64-67
- 7
Yamada T, Kameyama S, Fuchigami Y, Nakazumi Y, Dickins QS, Kimura J.
Changes of short latency somatosensory evoked potential in sleep.
Electroencephalopgr Clin Neurophysiol.
1988;
70
126-136
- 8
Emori T, Yamada T, Seki Y, Yasuhara A, Ando K, Honda Y, Leis AA, Vachatimanont P.
Recovery functions of fast frequency potentials in the initial negative wave of median
SEP.
Electroencephalogr Clin Neurophysiol.
1991;
78
116-123
- 9
Maccabee PJ, Pinkhasov EI, Cracco RQ.
Short latency somatosensory evoked potentials to median nerve stimulation: effect
of low frequency filter.
Electroencephalogr Clin Neurophysiol.
1983;
55
34-44
- 10
Eisen A, Roberts K, Low M, Hoirch M, Lawrence P.
Questions regarding the sequential neural generator theory of the somatosensory evoked
potential raised by digital filtering.
Electroencephalogr Clin Neurophysiol.
1984;
59
388-395
- 11
Wood CC, Cohen D, Cuffin BN, Yarita M, Allison T.
Electrical sources in human somatosensory cortex: identification by combined magnetic
and potential recordings.
Science.
1985;
227
1051-1053
- 12
Allison T, McCarthy G, Wood CC, Jones SJ.
Potentials evoked in human and monkey cerebral cortex by stimulation of the median
nerve.
Brain.
1991;
114
2465-2503
- 13
Curio G.
Linking 600 Hz „spkelike” EEG/MEG wavelets to cellular substrates. Concepts and Caveats.
J Clin Neurophysiol.
2000b;
17
377-396
- 14
Hashimoto I.
High-frequency oscillations of somatosensory evoked potentials and fields.
J Clin Neurophysiol.
2000;
17
309-320
- 15
Gobbelé R, Buchner H, Curio G.
High-frequency (600 Hz) SEP activities originating in the subcortical and cortical
human somatosensory system.
Electroenc Clin Neurophysiol.
1998;
108
182-189
- 16
Gobbelé R, Buchner H, Scherg M, Curio G.
Stability of high-frequency (600 Hz) components in human somatosensory evoked potentials
under variation of the stimulus rate - evidence for a thalamic origin.
Clin Neurophysiol.
1999;
110
1659-1663
- 17
Gobbelé R, Waberski TD, Simon H, Peters E, Klostermann F, Curio G, Buchner H.
Different origins of low- and high-frequency components (600 Hz) of human SEPs.
Clin Neurophysiol.
2004;
115
927-937
- 18
Klostermann F, Gobbelé R, Buchner H, Curio G.
Intrathalamic non-propagating generators of high-frequency (1000 Hz) SEP bursts recorded
subcortically in man.
Clin Neurophysiol.
2002;
113
1001-1005
- 19
Gobbelé R, Waberski TD, Thyerlei D, Thissen M, Darvas F, Klostermann F, Curio G, Buchner H.
Functional dissociation of a subcortical and cortical component of high-frequency
oscillations in human somatosensory evoked potentials by motor interference.
Neurosci Lett.
2003;
350
97-100
- 20
Klostermann F, Gobbelé R, Buchner H, Siedenberg R, Curio G.
Differential gating of slow postsynaptic and high-frequency spike-like components
in human SEP under isometric motor interference.
Brain Res.
2001;
922
95-103
- 21
Klostermann F, Gobbelé R, Buchner H, Curio G.
Dissociation of human thalamic and cortical SEP gating as revealed by intrathalamic
recordings under muscle relaxation.
Brain Res.
2002;
958
146-151
- 22 Curio G, Mackert BM, Abraham-Fuchs K, Haerer W.
High-frequency activity (600 Hz) evoked in the human primary somatosensory cortex
- A review of electric and magnetic recordings. In: Pantev C, Elbert Th und Lütkenhöner B (Eds.) Oscillatory event related brain
dynamics. Volume 271 NATO ASI Series A: Life Sciences. Plenum Press, NY 1994: 205-218
- 23
Swadlow HA.
Efferent neurons and suspected interneurons in SI vibrissa cortex of the awake rabbit:
receptive fields and axonal properties.
J Neurophysiol.
1989;
62
288-308
- 24
Rasmusson DD.
Changes in the response properties of neurons in the ventroposterior lateral thalamic
nucleus of the raccoon after peripheral deafferentation.
J Neurophysiol.
1996;
75
2441-2450
- 25
Gobbelé R, Waberski TD, Dieckhöfer A, Kawohl W, Klostermann F, Curio G, Buchner H.
Patterns of disturbed impulse propagation in MS identified by low and high frequency
SEP components.
J Clin Neurophysiol.
2003;
20
283-290
- 26
Rossini PM, Basciani M, Di Stefano E, Febbo A, Mercuri N.
Short latency scalp somatosensory evoked potentials and central spine to scalp propagation
characteristics during peroneal and median nerve stimulation in multiple sclerosis.
Electroenceph Clin Neurophysiol.
1985;
60
197-206
- 27
Poser CM, Paty DW, Scheinberg LC, McDonald WI, Davies FA, Ebers GC, Johnson KP, Sibley WA,
Silberberg DH, Tourtelotte WW.
New diagnostic criteria for multiple sclerosis: guidelines for research protocols.
Ann Neurol.
1983;
13
227-231
- 28
Hanajima R, Dostrovski JO, Lozano AM, Chen R.
Dissociation of thalamic high frequency oscillations and slow component of sensory
evoked potentials following damage to ascending pathways.
Clin Neurophysiol.
2006;
117
906-911
- 29
Näätänen R, Winkler I.
The concept of auditory stimulus representation in cognitive neuroscience.
Psychol Bull.
1999;
125
826-859
- 30 Rüsseler J, Munte TF.
Kognitive Potenziale (ereigniskorrelierte Potenziale, EKP). In: Buchner H, Noth J Evozierte Potenziale, Neurovegetative Diagnostik, Okulografie. Georg
Thieme Verlag Stuttgart - New York 2005: 80-94
- 31
Sams M, Hari R, Rif J, Knuutila J.
The human auditory sensory memory trace persists about 10 sec - Neuromagnetic evidence.
J Cognit Neurosci.
1993;
5
363-370
- 32
Näätänen R, Pakarinen S, Rinne T, Takegata R.
The mismatch negativity (MMN) - towards the optimal paradigm.
Clin Neurophysiol.
2004;
115
140-144
- 33
Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Thevenet M, Pernier J,
Näätänen R.
Separate representation of stimulus frequency, intensity, and duration in auditory
sensory memory - An event-related potiential and dipole-model analysis.
J Cognit Neurosci.
1995;
7
133-143
- 34
Schröger E.
A neural mechanism for involuntary attention shifts to changes in auditory stimulation.
J Cognit Neurosci.
1993;
5
363-370
- 35
Waberski TD, Kreitschmann-Andermahr I, Kawohl W, Darvas F, Ryang Y, Gobbelé R, Buchner H.
Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch
negativity in the cingulum and right inferior temporal gyrus.
Neurosci Lett.
2001;
308
107-110
- 36
Näätänen R.
Mismatch negativity: clinical research and possible applications.
Int J Psychophysiol.
2003;
48
179-188
- 37
Kujala T, Karma K, Ceponiene R, Belitz S, Turkkila P, Tervaniemi M, Näätänen R.
Plastic neural changes and reading improvement caused by audio-visual traning in reading-impaired
children.
Proc Natl Acad Sci USA.
2001;
98
10509-10514
- 38
Pekkonen E.
Mismatch negativity in aging and in Alzheimer's and Parkinson's diseases.
Audiol Neurootol.
2000;
5
111-139
- 39
Groenen P, Snik A, vand den Broek P.
On the clinical relevance of mismatch negativity - results from subjects with normal
hearing and cochlear implant users.
Audiol Neurootol.
1996;
1
112-124
- 40
Kallmann BA, Fackemann S, Toyka KV, Rieckmann P, Reiners K.
Early abnormalities of evoked potentials and future disability in patients with multiple
sclerosis.
Mult Scler.
2006;
12
58-65
- 41
Schlaeger R, Schindler C, Grize L, Kappos L, Fuhr P.
Combined visual, motor and somatosensory evoked potentials as markers of clinical
disability in early multiple sclerosis.
Clin Neurophyiol.
2007;
118
, in press
- 42
Magistris MR, Rosler KM, Truffert A, Myers JP.
Transcranial stimulation excites virtually all motor neurons supplying the target
muscle. A demonstration and a method improving the study of motor evoked potentials.
Brain.
1998;
121
437-450
- 43
Magistris MR, Rosler KM, Truffert A, Landis T, Hess CW.
A clinical study of motor evoked potentials using a triple stimulation technique.
Brain.
1999;
122
265-279
- 44
Rosler KM, Truffert A, Hess CW, Magistris MR.
Quantification of upper motor neuron loss in amyotrophic lateral sclerosis.
Clin Neurophysiol.
2000;
111
2208-2218
- 45
Komissarow L, Rollnik JD, Bogdanova D, Krampfl K, Khabirow FA, Kossev A, Dengler R,
Bufler J.
Triple stimulation technique (TST) in amyotrophic lateral sclerosis.
Clin Neurophysiol.
2004;
115
356-360
- 46
Humm AM, Z'Graggen WJ, Buhler R, Magistris MR, Rosler KM.
Quantification of central motor conduction deficits in multiple sclerosis patients
before and after treatment of acute exacerbation by methylprednisolone.
J Neurol Neurosurg Psychiatry.
2006;
77
345-350
- 47
Meyer BU, Riescher H, Gräfin von Einsiedel H, Kruggel F, Weindl A.
Inhibitory and excitatory interhemispheric transfers between motor cortical areas
in normal humans and patients with abnormalities of the corpus callosum.
Brain.
1995;
118
429-440
- 48
Höppner J, Kunesch E, Buchmann J, Hess A, Grossmann A, Benecke R.
Demyelination and axonal degeneration in corpus callosum assessed by analysis of transcallosally
mediated inhibition in multiple sclerosis.
Clin Neurophysiol.
1999;
110
748-756
- 49
Jung P, Beyerle A, Humpich M, Neumann-Haefelin T, Lanfermann H, Ziemann U.
Ipsilateral silent period: a marker of callosal conduction abnormality in early relapsing-remitting
multiple sclerosis?.
J Neurol Sci.
2006;
250
133-139
- 50
Wolters A, Classen J, Kunesch E, Grossmann A, Benecke R.
Measurements of transcallosally mediated cortical inhibition for differentiating parkinsonian
syndromes.
Mov Disord.
2004;
19
518-528
- 51
Kuhn AA, Grosse P, Holtz K, Browen P, Meyer BU, Kupsch A.
Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes.
Clin Neurophysiol.
2004;
115
1786-1795
- 52
Trompetto C, Buccolieri A, Marinelli L, Michelozzi G, Abbruzzese G.
Impairment of transcallosal inhibition in patients with corticobasal degeneration.
Clin Neurophysiol.
2003;
114
2181-2187
Korrespondenzadresse
Prof. Dr. med. H. Buchner
Klinik für Neurologie und klinischen Neurophysiologie
Knappschafts-Krankenhaus
Recklinghausen
Dorstener Str. 151
45657 Recklinghausen
Email: hbuchner@kk-recklinghausen.de