Pneumologie 2007; 61(9): 574-580
DOI: 10.1055/s-2007-980086
Serie: Intensivmedizin in der Pneumologie
© Georg Thieme Verlag Stuttgart · New York

Ernährungskonzepte bei Intensivpatienten

Nutritional Concepts for Patients under Intensive CareK.  G.  Kreymann1 , G.  de Heer1 , T.  Felbinger1 , S.  Kluge1 , A.  Nierhaus1 , U.  Suchner2 , R.  F.  Meier3
  • 1Klinik für Intensivmedizin, Universitätskrankenhaus Hamburg-Eppendorf
  • 2Fresenius Kabi Deutschland GmbH
  • 3Kantonsspital Liestal (CH)
Further Information

Publication History

Publication Date:
30 July 2007 (online)

Zusammenfassung

Das klinische Outcome von Intensivpatienten kann durch eine standardisierte Ernährungstherapie verbessert werden. Allerdings sind Studien zur enteralen oder parenteralen Ernährung, die den Anforderungen der „evidence-based medicine” gerecht werden, noch rar. Aus diesem Grund muss die Standardisierung immer noch ganz wesentlich auf dem Boden pathophysiologischer Überlegungen erfolgen. Wir beschreiben ein Konzept zur enteralen und parenteralen Ernährung schwer kranker Patienten, das eine Hyperalimentation in der akuten Phase der Erkrankung vermeidet und gleichzeitig immunologische Gesichtspunkte bei der Substratauswahl berücksichtigt. Eine äquivalente Zusammensetzung von enteraler und parenteraler Ernährung ermöglicht den problemlosen Übergang zwischen beiden Ernährungsformen. Das Ernährungsziel ergibt sich aus der Multiplikation der Grundrate, d. h. dem Körpergewicht in KG als Laufrate in ml/h - entsprechend 24 kcal/kg KG/24 h - mit dem Zielfaktor, der zwischen 0,2 und 1,8 liegt. Die enterale und parenterale Ernährung wird begleitet von der Zufuhr immunmodulierender Substanzen, d. h. von Glutamin und Antioxidantien.

Abstract

The clinical outcome of critical ill patients can be improved by standardised nutrition. However, trials meeting the standard of evidence-based medicine are rare. For this reason, standards still have to be based on pathophysiological considerations. We describe a concept of combined nutrition for critically ill patients which avoids hyperalimentation and considers also immunological aspects. An equivalent composition of enteral and parenteral nutrition allows a transition between both forms without problems. The nutritional goal is defined by multiplication of the base rate, i. e., body weight in kg as delivery rate in mL/h, - corresponding to 24 kcal/kg BW/24 h - with a target factor which varies between 0.2 and 1.8. Both forms of nutrition are complemented by immune-modulating substrates as glutamine and antioxidants.

Literatur

  • 1 Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation [published erratum appears in N Engl J Med 1999 Apr 29; 340 (17): 1376].  N Engl J Med. 1999;  340 (6) 448-454
  • 2 Hasselgren P O, Jagenburg R, Karlstrom L. et al . Changes of protein metabolism in liver and skeletal muscle following trauma complicated by sepsis.  J Trauma. 1984;  24 (3) 224-228
  • 3 Hasselgren P O. Muscle protein metabolism during sepsis.  Biochem Soc Trans. 1995;  23 (4) 1019-1025
  • 4 Aulick L H, Wilmore D W. Increased peripheral amino acid release following burn injury.  Surgery. 1979;  85 (5) 560-565
  • 5 Rosenblatt S, Clowes Jr G H, George B C. et al . Exchange of amino acids by muscle and liver in sepsis.  Arch Surg. 1983;  118 (2) 167-175
  • 6 Pearl R H, Clowes Jr G H, Hirsch E F. et al . Prognosis and survival as determined by visceral amino acid clearance in severe trauma.  J Trauma. 1985;  25 (8) 777-783
  • 7 Mizock B A. Alterations in carbohydrate metabolism during stress: a review of the literature.  Am J Med. 1995;  98 (1) 75-84
  • 8 White R H, Frayn K N, Little R A. et al . Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique.  JPEN J Parent Ent Nutrition. 1987;  11 (4) 345-353
  • 9 Stoner H B, Little R A, Frayn K N. et al . The effect of sepsis on the oxidation of carbohydrate and fat.  Br J Surg. 1983;  70 (1) 32-35
  • 10 Cuthbertson D P. Post-shock metabolic response.  Lancet. 1942;  1 433-437
  • 11 Moore F D. The body cell mass and its supporting environment; body composition in health and disease. Philadelphia, PA: Saunders 1963
  • 12 Rolih C A, Ober K P. The endocrine response to critical illness.  Med Clin North Am. 1995;  79 (1) 211-224
  • 13 Souba W W. Cytokine control of nutrition and metabolism in critical illness.  Curr Probl Surg. 1994;  31 (7) 577-643
  • 14 Tappy L, Schwarz J M, Schneiter P. et al . Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients [see comments].  Crit Care Med. 1998;  26 (5) 860-867
  • 15 Peck M D, Alexander J W, Gonce S J. et al . Low protein diets improve survival from peritonitis in guinea pigs.  Ann Surg. 1989;  209 (4) 448-454
  • 16 Alexander J W, Gonce S J, Miskell P W. et al . A new model for studying nutrition in peritonitis. The adverse effect of overfeeding.  Ann Surg. 1989;  209 (3) 334-340
  • 17 Krishnan J A, Parce P B, Martinez A. et al . Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes.  Chest. 2003;  124 (1) 297-305
  • 18 Kreymann G, Ebener C, Hartl W. et al . DGEM-Leitlinie Enterale Ernährung: Intensivmedizin.  Akt Ernähr-Med. 2003;  28 (Supplement 1) S42-S50
  • 19 Braunschweig C L, Levy P, Sheean P M. et al . Enteral compared with parenteral nutrition: a meta-analysis.  Am J Clin Nutr. 2001;  74 (4) 534-542
  • 20 Heyland D K, Dhaliwal R, Drover J W. et al . Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients.  JPEN J Parenter Enteral Nutr. 2003;  27 (5) 355-373
  • 21 Dhaliwal R, Jurewitsch B, Harrietha D. et al . Combination enteral and parenteral nutrition in critically ill patients: harmful or beneficial? A systematic review of the evidence.  Intensive Care Med. 2004;  30 (8) 1666-1671
  • 22 Carpentier Y A, Dupont I E. Advances in intravenous lipid emulsions.  World J Surg. 2000;  24 (12) 1493-1497
  • 23 Grimm H, Tibell A, Norrlind B. et al . Immunoregulation by parenteral lipids: impact of the n-3 to n-6 fatty acid ratio.  JPEN J Parent Ent Nutrition. 1994;  18 (5) 417-421
  • 24 Battistella F D, Widergren J T, Anderson J T. et al . A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition.  J Trauma. 1997;  43 (1) 52-58
  • 25 Mertes N, Grimm H, Furst P. et al . Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical patients: a randomized, double-blind, multicenter study.  Ann Nutr Metab. 2006;  50 (3) 253-259
  • 26 Wichmann M W, Thul P, Czarnetzki H D. et al . Evaluation of clinical safety and beneficial effects of a fish oil containing lipid emulsion (Lipoplus, MLF541): Data from a prospective, randomized, multicenter trial*.  Crit Care Med. 2007;  35 700-716
  • 27 Grimm H, Mertes N, Goeters C. et al . Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients.  Eur J Nutr. 2006;  45 (1) 55-60
  • 28 Gadek J E, DeMichele S J, Karlstad M D. et al . Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group [see comments].  Crit Care Med. 1999;  27 (8) 1409-1420
  • 29 Singer P, Theilla M, Fisher H. et al . Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury.  Crit Care Med. 2006;  34 (4) 1033-1038
  • 30 Pontes-Arruda A, Aragao A M, Albuquerque J D. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock.  Crit Care Med. 2006;  34 (9) 2325-2333
  • 31 Wischmeyer P E. Clinical applications of L-glutamine: past, present, and future.  Nutr Clin Pract. 2003;  18 (5) 377-385
  • 32 Novak F, Heyland D K, Avenell A. et al . Glutamine supplementation in serious illness: a systematic review of the evidence.  Crit Care Med. 2002;  30 (9) 2022-2029
  • 33 Kreymann K G, Berger M M, Deutz N E. et al . ESPEN Guidelines on Enteral Nutrition: Intensive care.  Clin Nutr. 2006;  25 (2) 210-223
  • 34 Heyland D K, Dhaliwalm R, Day A. et al . Optimizing the dose of glutamine dipeptides and antioxidants in critically ill patients: a phase I dose-finding study.  JPEN J Parenter Enteral Nutr. 2007;  31 (2) 109-118
  • 35 Heyland D K, Dhaliwal R, Day A G. et al . REducing Deaths due to Oxidative Stress (The REDOXS Study): Rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients.  Proc Nutr Soc. 2006;  65 (3) 250-263
  • 36 Alonso D V, Diaz J, Serrano E. et al . Plasma redox status relates to severity in critically ill patients.  Crit Care Med. 2000;  28 (6) 1812-1814
  • 37 Angstwurm M W, Engelmann L, Zimmermann T. et al . Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock.  Crit Care Med. 2007;  35 (1) 118-126
  • 38 Heyland D K, Novak F, Drover J W. et al . Should immunonutrition become routine in critically ill patients? A systematic review of the evidence.  JAMA. 2001;  286 (8) 944-953

1 Das hier beschriebene Konzept wurde in Zusammenarbeit mit der Firma Fresenius Kabi Deutschland GmbH entwickelt.

Prof. Dr. K. G. Kreymann

Klinik für Intensivmedizin, Universitätskrankenhaus Hamburg-Eppendorf

Martinistraße 52

20246 Hamburg

Email: kreymann@uke.uni-hamburg.de

    >