References and Notes
<A NAME="RD07407ST-1A">1a</A>
Varki A.
Glycobiology
1993,
3:
97
<A NAME="RD07407ST-1B">1b</A>
Dwek RA.
Chem. Rev.
1996,
96:
683
For some leading references, see:
<A NAME="RD07407ST-2A">2a</A>
Matsuo I.
Wada M.
Manabe S.
Yamaguchi Y.
Otake K.
Kato K.
Ito Y.
J. Am. Chem. Soc.
2003,
125:
3402
<A NAME="RD07407ST-2B">2b</A>
Wu B.
Hua Z.
Warren JD.
Ranganathan K.
Wan Q.
Chen G.
Tan Z.
Chen J.
Endo A.
Danishefsky SJ.
Tetrahedron Lett.
2006,
47:
5577
<A NAME="RD07407ST-2C">2c</A>
Wu X.
Grathwohl M.
Schmidt RR.
Angew. Chem. Int. Ed.
2002,
41:
4489
<A NAME="RD07407ST-2D">2d</A>
Du Y.
Zhang M.
Kong F.
Tetrahedron
2001,
57:
1757
<A NAME="RD07407ST-2E">2e</A>
Chiesa MV.
Schmidt RR.
Eur. J. Org. Chem.
2000,
3541
<A NAME="RD07407ST-2F">2f</A>
Paulsen H.
Angew. Chem., Int. Ed. Engl.
1990,
29:
823
<A NAME="RD07407ST-3">3</A>
Schachter H. In Carbohydrates in Chemistry and Biology
Vol. 3:
Ernst B.
Hart GW.
Sinaӱ P.
Wiley-VCH;
Weinheim:
2000.
p.155
<A NAME="RD07407ST-4A">4a</A>
Schuberth R.
Unverzagt C.
Tetrahedron Lett.
2005,
46:
4210
<A NAME="RD07407ST-4B">4b</A>
Weiss H.
Unverzagt C.
Angew. Chem. Int. Ed.
2003,
42:
4261
<A NAME="RD07407ST-4C">4c</A>
Unverzagt C.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1989
<A NAME="RD07407ST-5">5</A>
Rising TWDF.
Claridge TDW.
Moir JWB.
Fairbanks AJ.
ChemBioChem
2006,
7:
1177
<A NAME="RD07407ST-6">6</A>
Rising TWDF.
Claridge TDW.
Davies N.
Gamblin DP.
Moir JWB.
Fairbanks AJ.
Carbohydr. Res.
2006,
341:
1574
<A NAME="RD07407ST-7A">7a</A>
Jiang L.
Chan T.-H.
Tetrahedron Lett.
1998,
39:
355
<A NAME="RD07407ST-7B">7b</A>
Okawa M.
Liu WC.
Nakai Y.
Koshida S.
Fukase K.
Kusumoto S.
Synlett
1996,
1179
<A NAME="RD07407ST-7C">7c</A>
Garegg PJ.
Pure Appl. Chem.
1984,
56:
845
<A NAME="RD07407ST-7D">7d</A>
Lipták A.
Imre J.
Harangi J.
Nánási P.
Neszmélyi A.
Tetrahedron
1982,
38:
3721
<A NAME="RD07407ST-7E">7e</A>
Bhattacharjee SS.
Gorin PAJ.
Can. J. Chem.
1969,
47:
1195
<A NAME="RD07407ST-8">8</A> For a recent review of some reciprocal donor/acceptor selectivity which may control
the regiochemistry of glycosylation of different secondary hydroxyl groups, see:
Fraser-Reid B.
López JC.
Gómez AM.
Uriel C.
Eur. J. Org. Chem.
2004,
1387
For some recent examples, see:
<A NAME="RD07407ST-9A">9a</A>
López JC.
Agocs A.
Uriel C.
Gómez AM.
Fraser-Reid B.
Chem. Commun.
2005,
5088
<A NAME="RD07407ST-9B">9b</A>
Chou C.-H.
Wu C.-S.
Chen C.-H.
Lu L.-D.
Kulkarni SS.
Wong C.-H.
Hung S.-C.
Org. Lett.
2003,
4:
585
<A NAME="RD07407ST-9C">9c</A>
Zeng Y.
Kong F.
Carbohydr. Res.
2003,
338:
843
<A NAME="RD07407ST-10">10</A>
Wuts PGM.
Greene TW.
Protective Groups in Organic Synthesis
4th ed:
Wiley;
New York:
2007.
<A NAME="RD07407ST-11A">11a</A>
Watt GM.
Boons G.-J.
Carbohydr. Res.
2004,
339:
181
<A NAME="RD07407ST-11B">11b</A>
Smiljanic N.
Halila S.
Moreau V.
Djedaïni-Pilard F.
Tetrahedron Lett.
2003,
44:
8999
<A NAME="RD07407ST-11C">11c</A>
Wang W.
Kong F.
J. Org. Chem.
1999,
64:
5091
<A NAME="RD07407ST-11D">11d</A>
Boons GJ.
Zhu T.
Synlett
1997,
809
<A NAME="RD07407ST-12">12</A>
Typical Glycosylation Procedure
Diol glycosyl acceptor (˜40 mg) and trichloroacetimidate glycosyl donor (˜30 mg, 1.1
equiv) were dissolved in dry CH2Cl2 (˜5 mL) and transferred via canula to a flame-dried round-bottomed flask containing
activated 4 Å MS (10 mg). The solution was cooled to -60 °C and stirred under an atmosphere
of argon. TMSOTf (0.05 equiv) was added. The reaction mixture was stirred under argon,
and allowed to warm to r.t. slowly. After 15 h, TLC (typically PE-EtOAc, 1:1) indicated
formation of a major product (typically R
f
= 0.25) and complete consumption of trichloroacetimidate donor (typically R
f
= 0.5). Then, Et3N (10 µL) was added and the solution stirred for a further 10 min. The reaction mixture
was then filtered through Celite® and the filtrate concentrated in vacuo. The residue was then purified by flash column
chromatography (typically eluting with PE-EtOAc, 1:1) to give the α(1→4)-linked trisaccharide
product as a white foam.
<A NAME="RD07407ST-13">13</A>
Selected data for 7: white foam; [α]D
24 +38 (c 1.0, CHCl3). IR (KBr disc): νmax = 3473 (br, OH), 1777, 1744, 1715 (s, C=O) cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.05, 2.13 [6 H, 2 × s, OC(O)CH3], 3.14 (1 H, ddd, J
4b,5b = 9.5 Hz, J
5b,6b = 5.4 Hz, J
5b,6
′b 2.2 Hz, H-5b), 3.38 (1 H, dd, J
2b,3b = 3.1 Hz, J
3b,4b = 9.3 Hz, H-3b), 3.54 (1 H, dd, J
6b,6
′b 12.1 Hz, H-6b), 3.63-3.76 (9 H, m, H-4c, H-5a, H-5c, H-6c, H-6′b, H-6′c, OCH3), 3.79 (1 H, dd, J
5a,6a = 2.0 Hz, J
6a,
6
′a = 11.4 Hz, H-6a), 3.82-3.85 (1 H, m, H-3c, H-6′a), 3.90 (1 H, app t, J = 9.4 Hz, H-4b), 4.16 (1 H, app t, J = 9.2 Hz, H-4a), 4.31, 4.59 (2 H, ABq, J = 10.8 Hz, PhCH2), 4.33 (1 H, dd, J
2a,3a = 10.7 Hz, J
3a,4a = 8.5 Hz, H-3a), 4.39 (1 H, dd, J
1a,2a = 8.4 Hz, H-2a), 4.43, 4.81 (2 H, ABq, J = 10.9 Hz, PhCH2), 4.46, 4.89 (2 H, ABq, J = 12.4 Hz, PhCH2), 4.49, 4.77 (2 H, ABq, J = 12.1 Hz, PhCH2), 4.51, 4.75 (2 H, ABq, J = 11.0 Hz, PhCH2), 4.52, 4.61 (2 H, ABq, J = 12.3 Hz, PhCH2), 4.67 (1 H, s, H-1b), 5.33 (1 H, d, J
1c,2c = 1.6 Hz, H-1c), 5.47-5.485 (2 H, m, H-2b, H-2c), 5.61 (1 H, d, H-1a), 6.69-6.72
(2 H, m, 2 × Ar-H), 6.79-6.82 (2 H, m, 2 × Ar-H), 6.85-6.91 (3 H, m, 3 × ArH), 7.01-7.03
(2 H, m, 2 × ArH), 7.13-7.14 (2 H, m, 2 × ArH), 7.21-7.36 (23 H, m, 23 × ArH), 7.61-7.85
(4 H, m, 4 × ArH). 13C NMR (125.8 MHz, CDCl3): δ = 21.0, 21.0 [2 × q, 2 × OC(O)CH3], 55.6 (q, OCH3), 55.6 (d, C-2a), 61.8 (t, C-6b), 67.5 (d, C-2b), 68.3 (t, C-6a), 68.5 (d, C-2c),
68.7 (t, C-6c), 71.1 (t, PhCH2), 71.6 (d, C-4b), 71.8 (t, PhCH2), 72.4 (d, C-5c), 73.4, 73.5 (2 × t, 2 × PhCH2), 74.0 (d, C-4c), 74.5 (d, C-5a), 74.8 (t, PhCH2), 75.0 (d, C-5b), 75.1 (t, PhCH2), 76.9 (d, C-3a), 78.2 (d, C-3c), 78.6 (d, C-4a), 80.2 (d, C-3b), 97.6 (d, C-1a),
98.5 (d, C-1b), 99.2 (d, C-1c), 114.3, 118.6, 123.3, 127.3, 127.6, 127.6, 127.7, 127.8,
127.9, 127.9, 128.0, 128.1, 128.3, 128.4, 128.4, 128.5, 128.6 (17 × d, 36 × ArC),
131.5 (s, 2 × ArC), 133.8 (d, 2 × ArC), 136.9, 137.9, 137.9, 137.9, 138.2, 138.2,
150.8, 155.4 (8 × s, 8 × ArC), 169.9, 170.3 (2 × s, 4 × C=O); J
C-1a/H-1a = 166 Hz (β), J
C-1b/H-1b = 160 Hz (β), J
C-1c/H-1c = 176 Hz (α). MS (ESI+) [M + MeCN/NH4
+](major), [M + Na+]: m/z calcd (%) = 1386.5 (100), 1387.6 (88), 1388.6 (42), 1389.6 (14), 1390.6 (4) [M +
Na+]; found: 1386.5 (100), 1387.6 (83), 1388.6 (32), 1389.6 (8), 1390.6 (2).
<A NAME="RD07407ST-14">14</A>
In all cases the regiochemistry of the newly formed anomeric linkage was identified
by a combination of 2D NMR experiments including COSY, HSQC, HSQC ‘non-decoupled’,
HSQC-TOCSY, TOCSY, HMBC, and DEPT.
<A NAME="RD07407ST-15">15</A> For examples of the regioselective glycosylation of secondary carbohydrate trityl
ethers in the presence of primary ones, see:
Tsvetkov YE.
Kitov PI.
Backinowsky LV.
Kochetkov NK.
Tetrahedron Lett.
1993,
34:
7977
<A NAME="RD07407ST-16">16</A>
Selected data for 9: white foam; [α]D
24 +44 (c 1.0, CHCl3). IR (KBr disc): νmax = 3477 (br, OH), 1776, 1747, 1716 (s, C=O) cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.00, 2.17 [6 H, 2 × s, C(O)CH3], 2.19-2.25, 2.42-2.49 [2 H, 2 × m, OC(O)CH2CH2], 2.54-2.60, 2.72-2.79 [2 H, 2 × m, OC(O)CH2CH2], 3.20 (1 H, ddd, J
4b,5b = 9.4 Hz, J
5b,6b = 5.2 Hz, J
5b,6
′b = 2.0 Hz, H-5b), 3.52 (1 H, dd, J
6b,6
′b = 12.5 Hz, H-6b), 3.53 (1 H, app t, J = 9.1 Hz, H-3b), 3.64-3.69 (3 H, m, H-5a, H-6c, H-6′c), 3.71 (3 H, s, OCH3), 3.73-3.78 (3 H, m, H-4c, H-5c, H-6′b), 3.81-3.86 (3 H, m, H-3c, H-4b, H-6a), 3.89
(1 H, dd, J
5a,6
′a = 3.1 Hz, J
6a,6
′a = 11.2 Hz, H-6′a), 4.09 (1 H, app t, J = 9.2 Hz, H-4a), 4.30 (1 H, dd, J
2a,3a = 10.7 Hz, J
3a,4a = 8.6 Hz, H-3a), 4.38 (1 H, dd, J
1a,2a = 8.4 Hz, H-2a), 4.44-4.46 (2 H, m, 2 × PhCH), 4.48, 4.60 (2 H, ABq, J = 12.2 Hz, PhCH2), 4.50-4.53 (1 H, m, H-1b), 4.52, 4.71 (2 H, ABq, J = 11.0 Hz, PhCH2), 4.52, 4.81 (2 H, ABq, J = 11.6 Hz, PhCH2), 4.61, 4.73 (2 H, ABq, J = 11.4 Hz, PhCH2), 4.83 (2 H, m, 2 × PhCH), 5.00 (1 H, dd, J
1b,2b = 8.5 Hz, J
2b,3b = 9.2 Hz, H-2b), 5.30 (1 H, d, J
1c,2c = 1.5 Hz, H-1c), 5.45 (1 H, dd, J
2c,3c = 2.8 Hz, H-2c), 5.61 (1 H, d, H-1a), 6.67-6.71 (2 H, m, 2 × ArH), 6.80-6.88 (5 H,
m, 5 × Ar-H), 7.02-7.04 (2 H, m, 2 × Ar-H), 7.14-7.16 (2 H, m, 2 × ArH), 7.21-7.40
(23 H, m, 23 × ArH), 7.59-7.87 (4 H, m, 4 × ArH). 13C NMR (125.8 MHz, CDCl3): δ = 20.9 [q, OC(O)CH3], 27.7 [t, OC(O)CH2CH2], 29.8 [q, CC(O)CH3], 37.6 [t, OC(O)CH2CH2], 55.6 (q, OCH3), 55.6 (d, C-2a), 61.6 (t, C-6b), 67.6 (t, C-6a), 68.7 (t, C-6c), 68.7 (d, C-2c),
71.9 (t, PhCH2), 72.5 (d, C-5c), 73.5, 73.6 (2 × t, 2 × PhCH2), 73.8 (d, C-2b), 74.0 (d, C-4c), 74.5 (d, C-4b), 74.5 (t, PhCH2), 74.8 (d, C-5b), 74.9 (d, C-5a), 74.9, 75.1 (2 × t, 2 × PhCH2), 76.8 (d, C-3a), 78.1 (2 × d, C-3c, C-4a), 83.6 (d, C-3b), 97.5 (d, C-1a), 98.9
(d, C-1c), 100.2 (d, C-1b), 114.3, 118.7, 123.3, 127.1, 127.1, 127.4, 127.7, 127.7,
127.8, 127.9, 127.9, 127.9, 127.9, 128.0, 128.2, 128.3, 128.3, 128.4, 128.5 (19 ×
d, 36 × ArC), 131.6 (s, 2 × ArC), 133.7 (d, 2 × ArC), 137.8, 137.8, 137.9, 138.0,
138.1, 138.3, 150.8, 155.3 (8 × s, 8 × ArC), 170.0, 171.2, 206.1 (3 × s, 5 × C=O);
J
C-1a/H-1a = 166 Hz (β), J
C-1b/H-1b = 163 Hz (β), J
C-1c/H-1c = 176 Hz (α). MS (ESI+) [M + MeCN/NH4
+](major), [M + Na+]: m/z calcd (%) = 1442.6 (100), 1443.6 (91), 1444.6 (45), 1445.6 (16), 1446.6 (5) [M +
Na+]; found: 1442.6 (100), 1443.6 (90), 1444.6 (37), 1445.6 (9), 1446.6 (2).
<A NAME="RD07407ST-17">17</A>
Selected data for 11: white foam; [α]D
19 +16 (c 1.0, CHCl3). IR (KBr disc): νmax = 3445 (br, OH), 1777, 1717 (s, C=O) cm-1. 1H NMR (500 MHz, CDCl3): δ = 2.17 [3 H, s, C(O)CH3], 2.18-2.24, 2.42-2.48 [2 H, 2 × m, OC(O)CH2CH2], 2.54-2.60, 2.72-2.79 [2 H, 2 × m, OC(O)CH2CH2], 3.22 (1 H, ddd, J
4b,5b = 9.5 Hz, J
5b,6b = 5.5 Hz, J
5b,6
′b = 2.1 Hz, H-5b), 3.52 (1 H, dd, J
6b,6
′b = 12.2 Hz, H-6b), 3.55 (1 H, app t, J = 9.1 Hz, H-3b), 3.66-3.85 (10 H, m, H-4b, H-5a, H-5c, H-6a, H-6c, H-6′b, H-6′c,
OCH3), 3.89 (1 H, dd, J
5a,6
′a = 3.3 Hz, J
6a,6
′a = 11.1 Hz, H-6′a), 3.95 (1 H, app t, J = 9.2 Hz, H-4c), 3.99 (1 H, dd, J
2c,3c = 2.8 Hz, J
3c,4c = 9.2 Hz, H-3c), 4.09 (1 H, app t, J = 8.9 Hz, H-4a), 4.30 (1 H, dd, J
2a,3a = 10.7 Hz, J
3a,4a = 8.5 Hz, H-3a), 4.39 (1 H, dd, J
1a,2a = 8.5 Hz, H-2a), 4.44 (1 H, d, J = 12.4 Hz, PhCH), 4.49-4.53 (4 H, m, H-1b, 3 × PhCH), 4.57 (1 H, d, J = 11.4 Hz, PhCH), 4.60 (1 H, d, J = 11.3 Hz, PhCH), 4.66 (1 H, d, J = 12.1 Hz, PhCH), 4.78 (1 H, d, J = 12.7 Hz, PhCH), 4.80-4.84 (4 H, m, 4 × PhCH), 4.98 (1 H, dd, J
1b,2b = 8.2 Hz, J
2b,3b = 9.4 Hz, H-2b), 5.42 (1 H, d, J
1c,2c = 1.7 Hz, H-1c), 5.61 (1 H, d, H-1a), 5.68 (1 H, app t, J = 2.3 Hz, H-2c), 6.69-6.71 (2 H, m, 2 × ArH), 6.81-6.89 (4 H, m, 4 × ArH), 7.02-7.39
(30 H, m, 30 × ArH), 7.53-7.83 (5 H, m, 5 × ArH), 7.96-7.98 (2 H, m, 2 × ArH). 13C NMR (125.8 MHz, CDCl3): δ = 27.7 [t, OC(O)CH2CH2], 29.9 [q, CC(O)CH3], 37.7 [t, OC(O)CH2CH2], 55.6 (q, OCH3), 55.6 (d, C-2a), 61.8 (t, C-6b), 67.6 (t, C-6a), 68.9 (t, C-6c), 69.1 (b, C-2c),
71.7 (t, PhCH2), 72.8 (d, C-5c), 73.5, 73.6 (2 × t, 2 × PhCH2), 73.9 (d, C-2b), 74.1 (d, C-4c), 74.7 (t, PhCH2), 74.8 (d, C-4b), 74.9 (2 × d, C-5a, C-5b), 74.9, 75.2 (2 × d, 2 × PhCH2), 76.8 (d, C-3a), 78.1 (2 × d, C-3c, C-4a), 83.5 (d, C-3b), 97.5 (d, C-1a), 98.9
(d, C-1c), 100.2 (d, C-1b), 114.3, 118.7, 123.3, 127.2, 127.3, 127.4, 127.5, 127.6,
127.7, 127.8, 127.9, 128.0, 128.0, 128.2, 128.3, 128.3, 128.6, 129.9 (18 × d, 41 ×
ArC), 131.5 (s, 2 × ArC), 133.1, 133.7 (2 × d, 2 × ArC), 137.7, 137.9, 138.0, 138.1,
138.2, 138.3, 150.9, 155.3 (8 × s, 9 × ArC), 165.3, 171.2, 206.1 (3 × s, 5 × C=O);
J
C-1a/H-1a = 165 Hz (β), J
C-1b/H-1b = 164 Hz (β), J
C-1c/H-1c = 175 Hz (α). MS (ESI+) [M + MeCN/NH4
+](major), [M + Na+]: m/z calcd (%) = 1504.6 (100), 1505.6 (96), 1506.6 (50), 1507.6 (19), 1508.6 (5) [M +
Na+]; found: 1504.6 (100), 1505.6 (94), 1506.6 (41), 1507.6 (12), 1508.6 (3).
<A NAME="RD07407ST-18">18</A>
Paulsen H.
Angew. Chem., Int. Ed. Engl.
1982,
21:
155
<A NAME="RD07407ST-19A">19a</A>
Cid MB.
Valverde S.
López JC.
Gómez AM.
García M.
Synlett
2005,
1095
<A NAME="RD07407ST-19B">19b</A>
Cid MB.
Alfonso F.
Martín-Lomas M.
Synlett
2005,
2052
<A NAME="RD07407ST-19D">19d</A>
Sinaӱ P.
Pure Appl. Chem.
1978,
50:
1437
<A NAME="RD07407ST-20">20</A> For a recent review of the uses and intermediacy of sugar orthoesters, see:
Kong F.
Carbohydr. Res.
2007,
342:
345
<A NAME="RD07407ST-21">21</A>
Mootoo DR.
Konradsson P.
Udodong U.
Fraser-Reid B.
J. Am. Chem. Soc.
1988,
110:
5583
<A NAME="RD07407ST-22A">22a</A>
Fraser-Reid B.
López JC.
Radhakrishnan KV.
Mach M.
Schlueter U.
Gómez AM.
Uriel C.
Can. J. Chem.
2002,
124:
1075
<A NAME="RD07407ST-22B">22b</A>
Fraser-Reid B.
Anilkumar GN.
Nair LG.
Radhakrishnan KV.
López JC.
Gómez A.
Uriel C.
Aust. J. Chem.
2002,
55:
123
<A NAME="RD07407ST-22C">22c</A>
López JC.
Gómez A.
Fraser-Reid B.
Uriel C.
Tetrahedron Lett.
2003,
44:
1417