References and Notes
<A NAME="RG18207ST-1">1</A>
Hollemann AF.
Recl. Trav. Chim. Pays-Bas
1921,
40:
446
<A NAME="RG18207ST-2">2</A>
Hurtley WR.
Smiles S.
J. Chem. Soc.
1926,
1821
<A NAME="RG18207ST-3">3</A>
Hendrickson JB.
Okano S.
Bloom RK.
J. Org. Chem.
1969,
34:
3434
<A NAME="RG18207ST-4">4</A>
Blaschette A.
Jones PG.
Hamann T.
Näveke M.
Z. Anorg. Allg. Chem.
1993,
619:
912
<A NAME="RG18207ST-5">5</A>
Davis FA.
Sundarababu G.
Qi H.
Org. Prep. Proced. Int.
1998,
30:
107
<A NAME="RG18207ST-6">6</A>
Barbero M.
Degani I.
Fochi R.
Regondi V.
Gazz. Chim. Ital.
1986,
116:
165
<A NAME="RG18207ST-7">7</A>
Sørbye K.
Tautermann C.
Carlsen P.
Fiksdahl A.
Tetrahedron: Asymmetry
1998,
9:
681
<A NAME="RG18207ST-8">8</A>
Karino H,
Goda H,
Sakamoto J.-I,
Yoshida K, and
Nishiguchi H. inventors; WO 9633167.
; Chem. Abstr. 1997, 126, 18657
<A NAME="RG18207ST-9A">9a</A>
Barbero M,
Degani I,
Fochi R, and
Perracino P. inventors; WO 9839312.
; Chem. Abstr. 1998, 129, 244942
<A NAME="RG18207ST-9B">9b</A>
Barbero M.
Crisma M.
Degani I.
Fochi R.
Perracino P.
Synthesis
1998,
1171
<A NAME="RG18207ST-9C">9c</A>
Barbero M.
Degani I.
Dughera S.
Fochi R.
Synthesis
2004,
2386 ; and references cited therein
<A NAME="RG18207ST-10A">10a</A>
Artuso E.
Barbero M.
Degani I.
Dughera S.
Fochi R.
Tetrahedron
2006,
62:
3146
<A NAME="RG18207ST-10B">10b</A>
Dughera S.
Synthesis
2006,
1117
<A NAME="RG18207ST-10C">10c</A>
Barbero M.
Cadamuro S.
Dughera S.
Synthesis
2006,
3443
<A NAME="RG18207ST-10D">10d</A>
Barbero M.
Cadamuro S.
Dughera S.
Giaveno C.
Eur. J. Org. Chem.
2006,
4884
<A NAME="RG18207ST-11">11</A>
Tsuji J.
Palladium Reagents and Catalysts: New Perspectives for the 21st Century
Wiley;
Chichester:
2004.
Chap. 4.
p.431-469 ; and references therein
<A NAME="RG18207ST-12">12</A>
King JF. In
The Chemistry of Sulphonic Acids, Esters and their Derivatives
Patai S.
John Wiley;
New York:
1991.
Chap. 6.
p.249-259
For recent works on acid-catalyzed dehydrative etherification, esterification, and
acetalization reactions with metal catalysts, see for example:
<A NAME="RG18207ST-13A">13a</A>
Sharma GVM.
Mahalingam AK.
J. Org. Chem.
1999,
64:
8943
<A NAME="RG18207ST-13B">13b</A>
Sharma GVM.
Prasad TR.
Mahalingam AK.
Tetrahedron Lett.
2001,
42:
759
<A NAME="RG18207ST-13C">13c</A>
Saburi H.
Tanaka S.
Kitamura M.
Angew. Chem. Int. Ed.
2005,
44:
1730
<A NAME="RG18207ST-13D">13d</A>
Shibata T.
Fujiwara R.
Ueno Y.
Synlett
2005,
152
With solid-acid catalysis:
<A NAME="RG18207ST-13E">13e</A>
Scott LT.
Naples JO.
Synthesis
1973,
209
<A NAME="RG18207ST-13F">13f</A>
Olah GA.
Shamma T.
Prakash GKS.
Catal. Lett.
1997,
46:
1
<A NAME="RG18207ST-13G">13g</A>
Harmer MA.
Sun Q.
Appl. Catal., A
2001,
221:
45
<A NAME="RG18207ST-13H">13h</A>
Shen JGC.
Herman RG.
Klier K.
J. Phys. Chem. B
2002,
106:
9975
<A NAME="RG18207ST-13I">13i</A>
Sanz R.
Martinez A.
Miguel D.
Alvarez-Gutierrez JM.
Rodriguez F.
Adv. Synth. Catal.
2006,
348:
1841
In supercritical fluids:
<A NAME="RG18207ST-13J">13j</A>
Gray WK.
Smail FR.
Hitzler MG.
Ross SK.
Poliakoff M.
J. Am. Chem. Soc.
1999,
121:
10711
In ionic liquids:
<A NAME="RG18207ST-13K">13k</A>
Cole AC.
Jensen JL.
Ntai I.
Tran KLT.
Weaver KJ.
Forbes DC.
Davis JH.
J. Am. Chem. Soc.
2002,
124:
5962
<A NAME="RG18207ST-13L">13l</A>
Davis JH. inventors; WO 03086605.
; Chem. Abstr. 2003, 139, 325782
In water:
<A NAME="RG18207ST-13M">13m</A>
Manabe K.
Iimura S.
Sun X.-M.
Kobayashi S.
J. Am. Chem. Soc.
2002,
124:
11971
<A NAME="RG18207ST-14A">14a</A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
Wiley;
New York:
1999.
Chap. 2.
p.17-245
<A NAME="RG18207ST-14B">14b</A>
Feuer H.
Hooz J. In
The Chemistry of the Ether Linkage
Patai S.
Interscience;
New York:
1967.
Chap. 10.
p.445-498
<A NAME="RG18207ST-14C">14c</A>
Meerwein H. In
Methoden der Organischen Chemie (Houben-Weyl)
Vol. VI/3:
Thieme Verlag;
Stuttgart:
1965.
p.7-140
<A NAME="RG18207ST-15A">15a</A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
Wiley;
New York:
1999.
Chap. 5.
p.369-453
<A NAME="RG18207ST-15B">15b</A>
Euranto EK. In
The Chemistry of Carboxylic Acids and Esters
Patai S.
Interscience;
New York:
1969.
Chap. 11.
p.505-588
<A NAME="RG18207ST-16A">16a</A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
Wiley;
New York:
1999.
Chap. 4.
p.293-368
<A NAME="RG18207ST-16B">16b</A>
Schmitz E.
Eichhorn I. In
The Chemistry of the Ether Linkage
Patai S.
Interscience;
New York:
1967.
Chap. 7.
p.310-351
<A NAME="RG18207ST-16C">16c</A>
Bergstrom RG. In
The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups and Their Sulphur Analogues
Suppl. E, Part 2:
Wiley;
Chichester:
1980.
Chap. 20.
p.881-902
<A NAME="RG18207ST-16D">16d</A>
Shimizu K.-I.
Hayashi E.
Hatamachi T.
Kodama T.
Kitayama Y.
Tetrahedron Lett.
2004,
45:
5135
<A NAME="RG18207ST-16E">16e</A>
Kumar R.
Kumar D.
Chakraborti AK.
Synthesis
2007,
299
<A NAME="RG18207ST-17">17</A>
Typical Procedure for o
-Benzenedisulfonimide-Catalyzed Etherification (Entry 1, Table 1)
To a solution of 1,3-diphenylprop-2-en-1-ol (3; 0.42 g, 2.0 mmol) in abs. EtOH (10 mL) was added o-benzenedisulfon-imide (1; 5 mol%; 0.02 g, 0.1 mmol); the reaction mixture was stirred at r.t. The reaction
was monitored by TLC (PE-Et2O, 6:4), GC, and GC-MS analyses until complete disappearance of the starting material.
Then the reaction mixture was evaporated under reduced pressure and the residue was
poured into Et2O-H2O (40 mL, 1:1). The aqueous layer was separated. The organic extract was washed with
H2O (20 mL), dried over Na2SO4, and evaporated under reduced pressure. The crude residue was chromatographed on
a short column (PE-Et2O, 6:4) to provide pure (E)-1,3-diphenyl-3-ethoxyprop-1-ene (4a; GC, GC-MS, TLC, 1H NMR) in 77% yield (0.37 g); colorless oil. 1H NMR: δ = 1.33 (t, J = 7.0 Hz, 3 H), 3.60 (superimposed q, J = 7.0 Hz, 2 H diastereotopic), 4.98 (d, J = 6.8 Hz, 1 H), 6.38 (dd, J = 16.0, 6.8 Hz, 1 H), 6.68 (d, J = 16.0 Hz, 1 H), 7.25-7.50 (m, 10 H). 13C NMR: δ = 15.72, 64.33, 82.86, 126.93 (2 C), 127.17 (2 C), 127.94, 128.00, 128.84
(4 C), 131.00, 131.45, 136.97, 141.86. MS (EI, 70 eV): m/z (%) 238 (70) [M+], 105 (100).
<A NAME="RG18207ST-18">18</A>
Typical Procedure for o
-Benzenedisulfonimide-Catalyzed Esterification (Entry 5, Table 1)
To a solution of phenylacetic acid (5; 0.27 g, 2.0 mmol) and butan-1-ol (0.16 g, 2.2 mmol) in toluene (10 mL) was added
o-benzenedisulfonimide (1; 25 mol%; 0.11 g, 0.5 mmol) and the reaction mixture was stirred at 90 °C for 30
min. After the usual workup, the crude residue was chromatographed on a short column
(PE-Et2O, 8:2) to provide pure butyl phenylacetate (6a; GC, GC-MS, TLC, 1H NMR) in 90% yield (0.38 g); colorless oil with spectral data identical to those
reported.
[22d]
1H NMR: δ = 0.85 (t, J = 7.0 Hz, 3 H), 1.23-1.34 (m, 2 H), 1.48-1.58 (m, 2 H), 3.56 (s, 2 H), 4.04 (t, J = 6.6 Hz, 2 H), 7.15-7.28 (m, 5 H). 13C NMR: δ = 13.86, 19.27, 30.80, 41.66, 64.94, 127.21, 128.72 (2 C), 129.43 (2 C),
134.40, 171.88; MS (EI, 70 eV): m/z (%) = 192 (5) [M+], 91 (100).
<A NAME="RG18207ST-19A">19a</A>
Typical Procedure for o
-Benzenedisulfonimide-Catalyzed Acetalization (Entry 10, Table 1)
To a solution of 4-chlorobenzaldehyde (7a; 0.28 g, 2 mmol) and ethane-1,2-diol (9; 0.37 g, 6 mmol) in toluene (5 mL) was added o-benzenedisulfonimide (1; 1 mol%; 0.0044 g, 0.02 mmol) and the reaction mixture was stirred at 90 °C for 60
min. The reaction mixture was treated with solid NaHCO3, evaporated under reduced pressure, and the residue was poured into Et2O-H2O (40 mL, 1:1). The aqueous layer was separated. The organic extract was dried over
Na2SO4, and evaporated under reduced pressure; the crude residue was chromatographed on
a short column (PE-Et2O, 9.5:0.5) to provide pure 4-chlorobenzaldehyde ethlylene acetal in 87% yield (8d; 0.32 g); colorless oil with spectral data identical to those reported.
[19b]
1H NMR: δ = 3.92-3.99 (m, 2 H), 4.02-4.09 (m, 2 H), 5.72 (s, 1 H), 7.29 (d, J = 8.8 Hz, 2 H), 7.36 (d, J = 8.6 Hz, 2 H). 13C NMR: δ = 65.51 (2 C), 103.21, 128.10 (2 C), 128.75 (2 C), 135.20, 136.69. MS (EI,
70 eV): m/z (%) = 184 (35) [M+], 183 (100).
<A NAME="RG18207ST-19B">19b</A>
Katritzky AR.
Odens HH.
Voronkov MV.
J. Org. Chem.
2000,
65:
1886
<A NAME="RG18207ST-20">20</A>
The aqueous layer and aqueous washing from the various reactions were collected and
evaporated under reduced pressure. The residue was passed through a column of Dowex
50X8 ion-exchange resin (1.6 g for 1 g of product), eluting with H2O (about 35 mL). After removal of H2O under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide(1) was recovered; mp 192-194 °C, from toluene (lit. 3: mp 192-194 °C).
<A NAME="RG18207ST-21">21</A>
Matsuda I.
Wakamatsu S.
Komori K.-I.
Makino T.
Itoh K.
Tetrahedron Lett.
2002,
43:
1043
For compound 6a, see:
<A NAME="RG18207ST-22A">22a</A>
Sharghi H.
Sarvari MH.
Eskandari R.
J. Chem. Res., Synop.
2005,
488
<A NAME="RG18207ST-22B">22b</A>
Vijayakumar B.
Iyengar P.
Nagendrappa G.
Prakash BSJ.
J. Indian Chem. Soc.
2005,
82:
922
<A NAME="RG18207ST-22C">22c</A>
Banerjee A.
Sengupta S.
Adak MM.
Banerjee GC.
J. Org. Chem.
1983,
48:
3106
<A NAME="RG18207ST-22D">22d</A> For compounds 6a and 6b, see:
Gumaste VK.
Deshmukh ARAS.
Bhawal BM.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1996,
35:
1174
For compounds 8a and 8b, see:
<A NAME="RG18207ST-23A">23a</A>
Shimizu K.-I.
Hayashi E.
Hatamachi T.
Kodama T.
Kitayama Y.
Tetrahedron Lett.
2004,
45:
5135
For compound 8d, see:
<A NAME="RG18207ST-23B">23b</A>
Azzena U.
Dettori G.
Sforazzini G.
Yus M.
Foubelo F.
Tetrahedron
2006,
62:
1557
<A NAME="RG18207ST-23C">23c</A>
Shimizu K.-I.
Hayashi E.
Hatamachi T.
Kodama T.
Higuchi T.
Satsuma A.
Kitayama Y.
J. Catal.
2005,
231:
131
<A NAME="RG18207ST-23D">23d</A>
Huerta FF.
Gomez C.
Yus M.
Tetrahedron
1999,
55:
4043