Synlett, Table of Contents ACCOUNT© Georg Thieme Verlag Stuttgart · New YorkSynthesis of β-Lactams Using the Kinugasa ReactionRuna Pal, Subhash Chandra Ghosh, Koushik Chandra, Amit Basak*Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, IndiaFax: absk@chem.iitkgp.ernet.in; Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract The development of new strategies for the synthesis of β-lactams and their derivatives remains at the forefront of organic synthesis. The copper(I)-catalyzed cycloaddition of a terminal alkyne and a nitrone, the Kinugasa reaction, leading to the formation of a β-lactam has recently drawn to the attention of organic chemists because of its wide scope as well as interesting mechanism. This report aims to give an account of developments in this area with particular emphasis on asymmetric examples. 1 Introduction 2 Synthesis of β-Lactams Using the Kinusaga Reaction 3 Asymmetric Kinugasa Reaction 4 Intramolecular Kinugasa Reaction 5 Kinugasa Reactions under Click Chemistry Conditions 6 Proline-Mediated Kinugasa Reaction 7 Kinugasa Reaction in the Synthesis of Peptidomimetics 8 Conclusion Key words β-lactams - cycloadditions - alkynes - nitrones - Kinugasa reaction Full Text References References <A NAME="RA45107ST-1A">1a</A> Antibiotic Resistance: Origins, Evolution, Selection and Spread Chadwick DJ. Goode J. John Wiley & Sons; Chichester: 1997. <A NAME="RA45107ST-1B">1b</A> McGowan JE. Tenover FC. Nat. Rev. Microbiol. 2004, 2: 251 <A NAME="RA45107ST-1C">1c</A> Schmidt FR. Appl. Microbiol. Biotechnol. 2004, 63: 335 <A NAME="RA45107ST-2A">2a</A> Chain B. Nature 1991, 353: 492 <A NAME="RA45107ST-2B">2b</A> Ellis-Pegler RB. N. Z. Med. J. 1986, 99: 546 <A NAME="RA45107ST-3A">3a</A> Kuo D. Weidner J. Griffin P. Shah SK. Knight WB. Biochemistry 1994, 33: 8347 <A NAME="RA45107ST-3B">3b</A> Edwards PD. Bernstein PR. Med. Res. Rev. 1994, 14: 127 <A NAME="RA45107ST-3C">3c</A> Mascaretti OA. Boschetti CE. Danelon GO. Mata FG. Roveri OA. Curr. Med. Chem. 1995, 1: 441 <A NAME="RA45107ST-3D">3d</A> Wilmouth RC. Kassamally S. Westwood NJ. Sheppard RJ. Claridge TDW. Aplin RT. Wright PA. Pritchard GJ. Schofield CJ. Biochemistry 1999, 38: 7989 <A NAME="RA45107ST-4A">4a</A> Burnett DA. Caplen MA. Davis HR. Burrier RE. Clader JW. J. Med. Chem. 1994, 37: 1733 <A NAME="RA45107ST-4B">4b</A> Clader JW. Burnett DA. Caplen MA. Domalski MS. Dugar S. Vaccaro W. Sher R. Browne ME. Zhao H. J. Med. Chem. 1996, 39: 3684 <A NAME="RA45107ST-4C">4c</A> Wu G. Tormos W. J. Org. Chem. 1997, 62: 6412 <A NAME="RA45107ST-4D">4d</A> Vaccaro WD. Davis HR. Bioorg. Med. Chem. Lett. 1998, 8: 313 <A NAME="RA45107ST-4E">4e</A> Rosenblum SB. Huynh T. Afonso A. Davis HR. Tetrahedron 2000, 56: 5735 <A NAME="RA45107ST-4F">4f</A> Frick W. Bauer-Schäfer A. Bauer J. Girbig F. Corsiero D. Heuer H. Kramer W. Bioorg. Med. Chem. 2003, 11: 1639 <A NAME="RA45107ST-4G">4g</A> Burnett DA. Curr. Med. Chem. 2004, 11: 1873 <A NAME="RA45107ST-5A">5a</A> Staudinger H. Justus Liebigs Ann. Chem. 1907, 356: 51 It is generally accepted that the Staudinger reaction proceeds stepwise via a zwitterionic intermediate and not via a concerted pericyclic reaction: <A NAME="RA45107ST-5B">5b</A> Jiao L. Liang Y. Xu J. J. Am. Chem. Soc. 2006, 128: 6060 <A NAME="RA45107ST-6">6</A> Gilman H. Speeter H. J. Am. Chem. Soc. 1943, 65: 2250 <A NAME="RA45107ST-7">7</A> Hegedus LS. de Weck G. D’Andrea S. J. Am. Chem. Soc. 1998, 110: 2122 <A NAME="RA45107ST-8A">8a</A> Grai R. Justus Liebigs Ann. Chem. 1963, 661: 111 <A NAME="RA45107ST-8B">8b</A> Hoffmann H. Diehr HJ. Tetrahedron Lett. 1963, 1875 <A NAME="RA45107ST-8C">8c</A> Friedrich HJ. Tetrahedron Lett. 1971, 2981 <A NAME="RA45107ST-8D">8d</A> Clauss K. Justus Liebigs Ann. Chem. 1969, 722: 110 <A NAME="RA45107ST-8E">8e</A> Moriconi EJ. Kelly JF. J. Am. Chem. Soc. 1986, 88: 3657 <A NAME="RA45107ST-8F">8f</A> Buynak JD. Rao MN. J. Org. Chem. 1986, 51: 1571 <A NAME="RA45107ST-9">9</A> Marco-Contelles J. Angew. Chem. Int. Ed. 2004, 43: 2198 <A NAME="RA45107ST-10">10</A> Kinugasa M. Hashimoto S. J. Chem. Soc., Chem. Commun. 1972, 466 <A NAME="RA45107ST-11">11</A> Ding LK. Irwin WJ. J. Chem. Soc., Perkin Trans. 1 1976, 2382 <A NAME="RA45107ST-12">12</A> Ahn C. Kennington JW. DeShong P. J. Org. Chem. 1994, 59: 6282 <A NAME="RA45107ST-13A">13a</A> Dutta DK. Boruah RC. Sandhu JS. Heterocycles 1986, 24: 655 <A NAME="RA45107ST-13B">13b</A> Dutta DK. Boruah RC. Sandhu JS. Indian J. Chem., Sect. B 1986, 25: 350 <A NAME="RA45107ST-14">14</A> Okuro K. Enna M. Miura M. Nomura M. J. Chem. Soc., Chem. Commun. 1993, 1107 <A NAME="RA45107ST-15">15</A> Miura M. Enna M. Okuro K. Nomura M. J. Org. Chem. 1995, 60: 4999 <A NAME="RA45107ST-16A">16a</A> Basak A. Bhattacharya G. Bdour HMM. Tetrahedron 1998, 54: 6529 <A NAME="RA45107ST-16B">16b</A> Basak A. Bdour HMM. Bhattacharya G. Tetrahedron Lett. 1997, 38: 2535 <A NAME="RA45107ST-17">17</A> Basak A. Pal R. Bioorg. Med. Chem. Lett. 2005, 15: 2015 <A NAME="RA45107ST-18A">18a</A> Taggi AE. Hafez AM. Wack H. Young B. Durry WJ. Lectka T. J. Am. Chem. Soc. 2000, 122: 7831 <A NAME="RA45107ST-18B">18b</A> Taggi AE. Hafez AM. Wack H. Young B. Ferraris D. Lectka T. J. Am. Chem. Soc. 2002, 124: 6626 <A NAME="RA45107ST-19">19</A> Basak A. Ghosh SC. Bhowmick T. Das AK. Bertolasi V. Tetrahedron Lett. 2002, 43: 5499 <A NAME="RA45107ST-20">20</A> Lo MM.-C. Fu GC. J. Am. Chem. Soc. 2002, 124: 4572 <A NAME="RA45107ST-21A">21a</A> Ye M.-C. Zhou J. Huang Z.-Z. Tang Y. Chem. Commun. (Cambridge) 2003, 2554 <A NAME="RA45107ST-21B">21b</A> Ye M.-C. Zhou J. Tang Y. J. Org. Chem. 2006, 71: 3576 <A NAME="RA45107ST-22">22</A> Shintani R. Fu GC. Angew. Chem. Int. Ed. 2003, 42: 4082 <A NAME="RA45107ST-23A">23a</A> Banfi L. Guanti G. Angew. Chem. Int. Ed. Engl. 1995, 34: 2393 <A NAME="RA45107ST-23B">23b</A> Banfi L. Guanti G. Eur. J. Org. Chem. 1998, 1543 <A NAME="RA45107ST-24">24</A> Basak A. Khamrai UK. Mallick UK. Chem. Commun. 1996, 749 <A NAME="RA45107ST-25">25</A> Basak A. Mandal S. Tetrahedron Lett. 2002, 43: 4241 <A NAME="RA45107ST-26">26</A> Pal R. Basak A. Chem. Commun. 2006, 2992 <A NAME="RA45107ST-27A">27a</A> Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 <A NAME="RA45107ST-27B">27b</A> Rodionov VO. Fokin VV. Finn MG. Angew. Chem. Int. Ed. 2005, 44: 2210 <A NAME="RA45107ST-28">28</A> Basak A. Chandra K. Pal R. Ghosh SC. Synlett 2007, 1585 <A NAME="RA45107ST-29">29</A> Baldwin JE. Otsuka M. Wallace PM. Tetrahedron 1986, 42: 3097 <A NAME="RA45107ST-30">30</A> Basak A. Ghosh SC. Synlett 2004, 1637 <A NAME="RA45107ST-31">31</A> Palomo C. Aizpurua JM. Benito A. Galarza R. Khamrai UK. Vazquez J. Pascual-Teresa B. Nieto PM. Linden A. Angew. Chem. Int. Ed. 1999, 38: 3056 <A NAME="RA45107ST-32">32</A> Kessler H. Angew. Chem. Int. Ed. Engl. 1982, 21: 512 <A NAME="RA45107ST-33">33</A> Basak A. Ghosh SC. Das AK. Bertolasi V. Org. Biomol. Chem. 2005, 3: 4050