References and Notes
<A NAME="RG24207ST-1A">1a</A>
Zassinovich G.
Mestroni G.
Gladiali S.
Chem. Rev.
1992,
92:
1051
<A NAME="RG24207ST-1B">1b</A>
Ohkuma T.
Noyori R. In Comprehensive Asymmetric Catalysis
Vol. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.199
<A NAME="RG24207ST-1C">1c</A>
Blaser H.-U.
Malan C.
Pugin B.
Spindler F.
Steiner H.
Studer M.
Adv. Synth. Catal.
2003,
345:
103
<A NAME="RG24207ST-1D">1d</A>
Everaere K.
Mortreux A.
Carpentier J.-F.
Adv. Synth. Catal.
2003,
345:
67
<A NAME="RG24207ST-1E">1e</A>
Gladiali S.
Alberico E. In Transition Metals for Organic Synthesis
Vol. 2:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
p.145
<A NAME="RG24207ST-1F">1f</A>
Zanotti-Gerosa A.
Herns W.
Groarke M.
Hancock F.
Platinum Met. Rev.
2005,
49:
158
<A NAME="RG24207ST-1G">1g</A>
Ikariya T.
Murata K.
Noyori R.
Org. Biomol. Chem.
2006,
4:
393
<A NAME="RG24207ST-1H">1h</A>
Noyori R.
Hashiguchi S.
Acc. Chem. Res.
1997,
30:
97
<A NAME="RG24207ST-1I">1i</A>
Bianchini C.
Glendenning L.
Chemtracts
1997,
10:
333
<A NAME="RG24207ST-1J">1j</A>
Palmer MJ.
Wills M.
Tetrahedron: Asymmetry
1999,
10:
2045
<A NAME="RG24207ST-1K">1k</A>
Ohkuma T.
Noyori R.
Comprehensive Asymmetric Catalalysis
Suppl. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
2004.
p.43
<A NAME="RG24207ST-1L">1l</A>
Kitamura M.
Noyori R. In Ruthenium in Organic Synthesis
Murahashi S.-I.
Wiley-VCH;
Weinheim:
2004.
p.3
<A NAME="RG24207ST-1M">1m</A>
Gladiali S.
Alberico E.
Chem. Soc. Rev.
2006,
35:
226
<A NAME="RG24207ST-1N">1n</A>
Wu X.
Xiao J.
Chem. Commun.
2007,
2449
For recent selected examples, see:
<A NAME="RG24207ST-2A">2a</A>
Brandt P.
Roth P.
Andersson PG.
J. Org. Chem.
2004,
69:
4885
<A NAME="RG24207ST-2B">2b</A>
Kundu MK.
Woggon W.-D.
Angew. Chem. Int. Ed.
2004,
43:
6731
<A NAME="RG24207ST-2C">2c</A>
Xue D.
Chen Y.-C.
Cui X.
Wang Q.-W.
Zhu J.
Deng J.-G.
J. Org. Chem.
2005,
70:
3584
<A NAME="RG24207ST-2D">2d</A>
Wu X.
Li X.
King F.
Xiao J.
Angew. Chem. Int. Ed.
2005,
44:
3407
<A NAME="RG24207ST-2E">2e</A>
Hayes AM.
Morris DJ.
Clarkson GJ.
Wills M.
J. Am. Chem. Soc.
2005,
127:
7318
<A NAME="RG24207ST-2F">2f</A>
Baratta W.
Chelucci G.
Gladiali S.
Siega K.
Toniutti M.
Zanette M.
Zangrando E.
Rigo P.
Angew. Chem. Int. Ed.
2005,
44:
6214
<A NAME="RG24207ST-2G">2g</A>
Enthaler S.
Jackstell R.
Hagemann B.
Junge K.
Erre G.
Beller M.
J. Organomet. Chem.
2006,
691:
4652
<A NAME="RG24207ST-2H">2h</A>
Reetz MT.
Li X.
J. Am. Chem. Soc.
2006,
128:
1044
<A NAME="RG24207ST-3A">3a</A>
Pastor IM.
Västilä P.
Adolfsson H.
Chem. Commun.
2002,
2046
<A NAME="RG24207ST-3B">3b</A>
Pastor IM.
Västilä P.
Adolfsson H.
Chem. Eur. J.
2003,
9:
4031
<A NAME="RG24207ST-3C">3c</A>
Bøgevig A.
Pastor IM.
Adolfsson H.
Chem. Eur. J.
2004,
10:
294
<A NAME="RG24207ST-3D">3d</A>
Västilä P.
Zaitsev AB.
Wettergren J.
Privalov T.
Adolfsson H.
Chem. Eur. J.
2006,
12:
3218
<A NAME="RG24207ST-4">4</A>
Zaitsev AB.
Adolfsson H.
Org. Lett.
2006,
8:
5129
For other examples of amino acid based ligands in the transfer hydrogenation of ketones,
see:
<A NAME="RG24207ST-5A">5a</A>
Ohta T.
Nakahara S.
Shigemura Y.
Hattori K.
Furokawa I.
Chem. Lett.
1998,
491
<A NAME="RG24207ST-5B">5b</A>
Ohta T.
Nakahara S.
Shigemura Y.
Hattori K.
Furokawa I.
Appl. Organomet. Chem.
2001,
15:
699
<A NAME="RG24207ST-5C">5c</A>
Carmona D.
Lahoz FJ.
Atencio R.
Oro LA.
Lamata MP.
Viguri F.
San José E.
Vega C.
Reyes J.
Joó F.
Kathó .
Chem. Eur. J.
1999,
5:
1544
<A NAME="RG24207ST-5D">5d</A>
Kathó .
Carmona D.
Viguri F.
Remacha CD.
Kovács J.
Joó F.
Oro LA.
J. Organomet. Chem.
2000,
593-594:
209
<A NAME="RG24207ST-5E">5e</A>
Carmona D.
Lamata MP.
Viguri F.
Dobrinovich I.
Lahoz FJ.
Oro LA.
Adv. Synth. Catal.
2002,
344:
499
<A NAME="RG24207ST-5F">5f</A>
Carmona D.
Lamata MP.
Oro LA.
Eur. J. Inorg. Chem.
2002,
2239
<A NAME="RG24207ST-5G">5g</A>
Faller JW.
Lavoie AR.
Organometallics
2001,
20:
5245
<A NAME="RG24207ST-5H">5h</A>
Rhyoo HY.
Yoon Y.-A.
Park H.-J.
Chung YK.
Tetrahedron Lett.
2001,
42:
5045
<A NAME="RG24207ST-5I">5i</A>
Rhyoo HY.
Park H.-J.
Chung YK.
Chem. Commun.
2001,
2064
<A NAME="RG24207ST-5J">5j</A>
Rhyoo HY.
Park H.-J.
Suh WH.
Chung YK.
Tetrahedron Lett.
2002,
43:
269
Highly efficient vanadium catalysts containing ligands based on hydroxamic acids were
recently employed in the asymmetric epoxidation of allylic alcohols, see:
<A NAME="RG24207ST-6A">6a</A>
Zhang W.
Basak A.
Kosugi Y.
Hoshino Y.
Yamamoto H.
Angew. Chem. Int. Ed.
2005,
44:
4389
For selected earlier reports, see:
<A NAME="RG24207ST-6B">6b</A>
Michaelson RC.
Palermo RE.
Sharpless KB.
J. Am. Chem. Soc.
1977,
99:
1992
<A NAME="RG24207ST-6C">6c</A>
Murase N.
Hoshino Y.
Oishi M.
Yamamoto H.
J. Org. Chem.
1999,
64:
338
<A NAME="RG24207ST-6D">6d</A>
Hoshino Y.
Yamamoto H.
J. Am. Chem. Soc.
2000,
122:
10452
<A NAME="RG24207ST-6E">6e</A>
Bolm C.
Kühn T.
Synlett
2000,
899
<A NAME="RG24207ST-6F">6f</A>
Bolm C.
Coord. Chem. Rev.
2003,
237:
245
<A NAME="RG24207ST-7">7</A>
Giacomelli G.
Porcheddu A.
Salaris M.
Org. Lett.
2003,
5:
2715
<A NAME="RG24207ST-8">8</A>
General Procedure for the Preparation of Hydroxamic Acid Ligands 1a-d
To a solution of 2,4,6-trichloro-1,3,5-triazine (0.1 mmol) in anhyd CH2Cl2 (8 mL) cooled to 0 °C, the following components were added in the order they are
written: Boc-protected amino acid (3 mmol), NMM (6 mmol), DMAP (0.3 mmol), and NH2OH·HCl (3 mmol). The reaction mixture was stirred at r.t. for 14 h and thereafter
filtered through a plug of silica, using EtOAc as eluent. The residue obtained after
evaporation of the filtrate was chromatog-raphed on silica (EtOAc-pentane, 10:1),
followed by recrystallization from acetone-pentane to give the hydroxamic acids.
Compound 1a: yield 41%. 1H NMR (400 MHz, acetone-d
6, 25 °C): δ = 10.09 (s, 1 H), 8.22 (br s, 1 H), 6.06 (s, 1 H), 4.08 (q, J = 7.11 Hz, 1 H), 1.40 (s, 9 H), 1.29 (d, J = 7.11 Hz, 3 H). 13C NMR (100 MHz, acetone-d
6, 25 °C): δ = 170.0, 155.1, 78.3, 47.7, 27.5, 17.8.
Compound 1b: yield 25%. 1H NMR (400 MHz, acetone-d
6, 25 °C ): δ = 10.18 (br s, 1 H), 8.22 (br s, 1 H), 5.91 (d, J = 8.16 Hz, 1 H), 3.75-3.85 (m, 1 H), 1.40 (s, 9 H), 0.89-0.94 (m, 6 H). 13C NMR (100 MHz, acetone-d
6, 25 °C ): δ = 168.4, 155.4, 78.2, 57.5, 30.8, 27.5, 18.5, 17.6.
Compound 1c: yield 25%. 1H NMR (400 MHz, acetone-d
6, 25 °C): δ = 10.20 (br s, 1 H), 8.37 (br s, 1 H), 7.16-7.31 (m, 5 H), 6.12 (d, J = 7.32 Hz, 1 H), 4.23-4.36 (m, 1 H), 3.10 (dd, J = 13.71, 6.03 Hz, 1 H), 2.91 (dd, J = 13.71, 8.59 Hz, 1 H), 1.33 (s, 9 H). 13C NMR (100 MHz, acetone-d
6, 25 °C): δ = 168.4, 155.1, 137.5, 129.2, 128.1, 126.3, 78.4, 53.6, 38.1, 27.5.
Compound 1d: yield 10%. 1H NMR (400 MHz, acetone-d
6, 25 °C): δ = 10.39 (br s, 1 H), 8.25 (br s, 1 H), 7.42-7.47 (m, 2 H), 7.26-7.37 (m,
3 H), 6.46 (d, J = 6.10 Hz, 1 H), 5.20 (d, J = 6.10 Hz, 1 H), 1.39 (s, 9 H). 13C NMR (100 MHz, acetone-d
6, 25 °C): δ = 167.3, 154.7, 138.9, 128.3, 127.6, 127.0, 78.6, 55.7, 27.5.
<A NAME="RG24207ST-9">9</A> For the original report on the importance of external base in transition-metal-catalyzed
transfer-hydrogenation reactions, see:
Chowdhury RL.
Bäckvall J.-E.
J. Chem. Soc., Chem. Commun.
1991,
1063
<A NAME="RG24207ST-10">10</A>
General Procedure for the Transfer Hydrogenation of Ketones Using Ligands 1a-d
[{RhCl2Cp*}2] (0.0025 mmol), ligand (0.0055 mmol), and LiCl (0.05 mmol) were dried under vacuum
in a dry Schlenk tube for 15 min. Ketone (1 mmol), i-PrOH (4.5 mL), and a 0.01 M solution of i-PrONa in i-PrOH (0.5 mL, 5 mol%) were added under nitrogen. The reaction mixture was stirred
at ambient temperature. Aliquots were taken after the reaction times indicated in
Tables
[1]
and
[2]
and were then passed through a pad of silica with EtOAc as the eluent. The resulting
solutions were analyzed by GLC (CP Chirasil DEXCB).
<A NAME="RG24207ST-11">11</A>
Turnover frequencies determined after 30 min reaction time.