Int J Sports Med 2008; 29(9): 719-725
DOI: 10.1055/s-2007-989442
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Resistance Exercise Reduces Muscular Substrates in Women

M. P. Harber1 , J. D. Crane1 , M. D. Douglass1 , K. D. Weindel1 , T. A. Trappe1 , S. W. Trappe1 , W. F. Fink1
  • 1Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
Further Information

Publication History

accepted after revision November 19, 2007

Publication Date:
22 January 2008 (online)

Abstract

The purpose of this investigation was to examine the influence of an acute bout of resistance exercise (RE) on intramuscular triglyceride (IMTG) and muscle glycogen concentrations and intracellular signaling in women with high body fat content. Six overweight women with a high percent body fat (age 29 ± 3 yr; BMI 28 ± 3 kg/m2, body fat 38 ± 4 %) performed 6 sets of 10 repetitions of knee extension exercise at 70 % 1RM. Muscle biopsies were obtained from the vastus lateralis before, 1 min after (POST1), and 2 h after (POST2) exercise. Acute RE reduced (p < 0.05) IMTG content ∼ 40 % at POST1 and POST2 (75 ± 5; 45 ± 6; 50 ± 10 mmol/kg/dry wt). Muscle glycogen was also reduced (p < 0.05) ∼ 25 % at POST1 and remained lower at POST2 (317 ± 14; 241 ± 30; 235 ± 26 mmol/kg/dry wt). ERK1/2, SAPK/JNK, and p38 phosphorylation were increased (p < 0.05) ∼ 2 – 3-fold at POST1 and ERK1/2 remained elevated and POST2 whereas SAPK/JNK and p38 returned to basal levels. AMPKα phosphorylation was unchanged in response to RE. These results show that both IMTG and muscle glycogen stores serve as an important energy source during RE in overweight women and the MAP kinase signaling response to RE is not compromised by high levels of body fat.

References

  • 1 Arkinstall M J, Bruce C R, Clark S A, Rickards C A, Burke L M, Hawley J A. Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity.  J Appl Physiol. 2004;  97 2275-2283
  • 2 Atherton P J, Babraj J, Smith K, Singh J, Rennie M J, Wackerhage H. Selective activation of AMPK‐PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation.  FASEB J. 2005;  19 786-788
  • 3 Bergstrom J. Muscle electrolytes in man.  Scand J Clin Lab Invest Suppl . 1962;  68 1-110
  • 4 Boppart M D, Aronson D, Gibson L, Roubenoff R, Abad L W, Bean J, Goodyear L J, Fielding R A. Eccentric exercise markedly increases c-Jun NH(2)-terminal kinase activity in human skeletal muscle.  J Appl Physiol. 1999;  87 1668-1673
  • 5 Boppart M D, Asp S, Wojtaszewski J F, Fielding R A, Mohr T, Goodyear L J. Marathon running transiently increases c-Jun NH2-terminal kinase and p 38 activities in human skeletal muscle.  J Physiol. 2000;  526 Pt 3 663-669
  • 6 Cartee G D, Young D A, Sleeper M D, Zierath J, Wallberg-Henriksson H, Holloszy J O. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise.  Am J Physiol. 1989;  256 E494-499
  • 7 Carter S L, Rennie C, Tarnopolsky M A. Substrate utilization during endurance exercise in men and women after endurance training.  Am J Physiol. 2001;  280 E898-907
  • 8 Coffey V G, Zhong Z, Shield A, Canny B J, Chibalin A V, Zierath J R, Hawley J A. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans.  FASEB J. 2006;  20 190-192
  • 9 Costill D L, Bowers R, Branam G, Sparks K. Muscle glycogen utilization during prolonged exercise on successive days.  J Appl Physiol. 1971;  31 834-838
  • 10 Costill D L, Gollnick P D, Jansson E D, Saltin B, Stein E M. Glycogen depletion pattern in human muscle fibres during distance running.  Acta Physiol Scand. 1973;  89 374-383
  • 11 Costill D L, Sparks K, Gregor R, Turner C. Muscle glycogen utilization during exhaustive running.  J Appl Physiol. 1971;  31 353-356
  • 12 Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle.  J Appl Physiol. 2005;  99 950-956
  • 13 Donsmark M, Langfort J, Holm C, Ploug T, Galbo H. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase.  J Physiol. 2003;  550 845-854
  • 14 Dreyer H C, Fujita S, Cadenas J G, Chinkes D L, Volpi E, Rasmussen B B. Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle.  J Physiol. 2006;  576 613-624
  • 15 Essen-Gustavsson B, Tesch P A. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise.  Eur J Appl Physiol. 1990;  61 5-10
  • 16 Fluckey J D, Hickey M S, Brambrink J K, Hart K K, Alexander K, Craig B W. Effects of resistance exercise on glucose tolerance in normal and glucose-intolerant subjects.  J Appl Physiol. 1994;  77 1087-1092
  • 17 Frayn K N, Maycock P F. Skeletal muscle triacylglycerol in the rat: methods for sampling and measurement, and studies of biological variability.  J Lipid Res. 1980;  21 139-144
  • 18 Goodpaster B H, Wolfe R R, Kelley D E. Effects of obesity on substrate utilization during exercise.  Obes Res. 2002;  10 575-584
  • 19 Harber M P, Gallagher P M, Trautmann J, Trappe S W. Myosin heavy chain composition of single muscle fibers in male distance runners.  Int J Sports Med. 2002;  23 484-488
  • 20 Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise.  Acta Physiol Scand. 1967;  71 129-139
  • 21 Hirosumi J, Tuncman G, Chang L, Gorgun C Z, Uysal K T, Maeda K, Karin M, Hotamisligil G S. A central role for JNK in obesity and insulin resistance.  Nature. 2002;  420 333-336
  • 22 Horowitz J F, Klein S. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.  J Appl Physiol. 2000;  89 2276-2282
  • 23 Hurley B F, Nemeth P M. Martin WH 3rd . Muscle triglyceride utilization during exercise: effect of training.  J Appl Physiol. 1986;  60 562-567
  • 24 Ivy J L, Frishberg B A, Farrell S W, Miller W J, Sherman W M. Effects of elevated and exercise-reduced muscle glycogen levels on insulin sensitivity.  J Appl Physiol. 1985;  59 154-159
  • 25 Koopman R, Manders R J, Jonkers R A, Hul G B, Kuipers H, van Loon L J. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males.  Eur J Appl Physiol. 2006;  96 525-534
  • 26 Koopman R, Manders R J, Zorenc A H, Hul G B, Kuipers H, Keizer H A, van Loon L J. A single session of resistance exercise enhances insulin sensitivity for at least 24 h in healthy men.  Eur J Appl Physiol. 2005;  94 180-187
  • 27 Koopman R, Zorenc A H, Gransier R J, Cameron-Smith D, van Loon L J. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers.  Am J Physiol. 2006;  290 E1245-1252
  • 28 Krssak M, Petersen K F, Bergeron R, Price T, Laurent D, Rothman D L, Roden M, Shulman G I. Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study.  J Clin Endocrinol Metab. 2000;  85 748-754
  • 29 Nader G A, Esser K A. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise.  J Appl Physiol. 2001;  90 1936-1942
  • 30 Nguyen M T, Satoh H, Favelyukis S, Babendure J L, Imamura T, Sbodio J I, Zalevsky J, Dahiyat B I, Chi N W, Olefsky J M. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes.  J Biol Chem. 2005;  280 35361-35371
  • 31 Pan D A, Lillioja S, Kriketos A D, Milner M R, Baur L A, Bogardus C, Jenkins A B, Storlien L H. Skeletal muscle triglyceride levels are inversely related to insulin action.  Diabetes. 1997;  46 983-988
  • 32 Pascoe D D, Costill D L, Fink W J, Robergs R A, Zachwieja J J. Glycogen resynthesis in skeletal muscle following resistive exercise.  Med Sci Sports Exerc. 1993;  25 349-354
  • 33 Passonneau J V, Lauderdale V R. A comparison of three methods of glycogen measurement in tissues.  Anal Biochem. 1974;  60 405-412
  • 34 Robergs R A, Pearson D R, Costill D L, Fink W J, Pascoe D D, Benedict M A, Lambert C P, Zachweija J J. Muscle glycogenolysis during differing intensities of weight-resistance exercise.  J Appl Physiol. 1991;  70 1700-1706
  • 35 Roepstorff C, Thiele M, Hillig T, Pilegaard H, Richter E A, Wojtaszewski J F, Kiens B. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise.  J Physiol. 2006;  574 125-138
  • 36 Roepstorff C, Vistisen B, Donsmark M, Nielsen J N, Galbo H, Green K A, Hardie D G, Wojtaszewski J F, Richter E A, Kiens B. Regulation of hormone-sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise.  J Physiol. 2004;  560 551-562
  • 37 Sakamoto K, Goodyear L J. Invited review: intracellular signaling in contracting skeletal muscle.  J Appl Physiol. 2002;  93 369-383
  • 38 Steffensen C H, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise.  Am J Physiol. 2002;  282 E634-642
  • 39 Tesch P A, Colliander E B, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise.  Eur J Appl Physiol. 1986;  55 362-366
  • 40 Trappe T A, Raue U, Tesch P A. Human soleus muscle protein synthesis following resistance exercise.  Acta Physiol Scand. 2004;  182 189-196
  • 41 van Loon L J, Schrauwen-Hinderling V B, Koopman R, Wagenmakers A J, Hesselink M K, Schaart G, Kooi M E, Saris W H. Influence of prolonged endurance cycling and recovery diet on intramuscular triglyceride content in trained males.  Am J Physiol. 2003;  285 E804-811
  • 42 Vukovich M D, Costill D L, Hickey M S, Trappe S W, Cole K J, Fink W J. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise.  J Appl Physiol. 1993;  75 1513-1518
  • 43 Widegren U, Jiang X J, Krook A, Chibalin A V, Bjornholm M, Tally M, Roth R A, Henriksson J, Wallberg-Henriksson H, Zierath J R. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle.  FASEB J. 1998;  12 1379-1389
  • 44 Williamson D, Gallagher P, Harber M, Hollon C, Trappe S. Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle.  J Physiol. 2003;  547 977-987

Dr. Matthew Harber

Ball State University
Human Performance Laboratory

2000 Unversity Ave.

47306 Muncie, Indiana

United States

Phone: + 76 52 85 98 40

Fax: + 76 52 85 85 96

Email: mharber@bsu.edu

    >