ABSTRACT
Researchers over the past 40 years have utilized bronchoalveolar lavage (BAL) as a
tool to help expand our knowledge of pulmonary medicine. Many reports have documented
BAL as a safe procedure for research subjects. New technologies, such as flow cytometry,
have provided much needed insight into the mechanisms behind several pulmonary diseases.
The concept of the lung as an easily accessible mucosal site to monitor local immune
responses and treatment effects is evolving. Future BAL research with human subjects,
aided by new technology, will undoubtedly yield clinically relevant information regarding
biomarkers of disease and new therapeutic targets.
KEYWORDS
Bronchoalveolar lavage fluid - safety - cytometry - immunology - acellular
REFERENCES
- 1
Baughman R P.
The uncertainties of bronchoalveolar lavage.
Eur Respir J.
1997;
10
1940-1942
- 2 Costabel U. Atlas of Bronchoalveolar Lavage. Philadelphia; Chapman & Hall Medical
1998: 91
- 3
Reynolds H Y.
Use of bronchoalveolar lavage in humans: past necessity and future imperative.
Lung.
2000;
178
271-293
- 4
Rottoli P, Bargagli E.
Is bronchoalveolar lavage obsolete in the diagnosis of interstitial lung disease?.
Curr Opin Pulm Med.
2003;
9
418-425
- 5
Veeraraghavan S, Latsi P I, Wells A U et al..
BAL findings in idiopathic nonspecific interstitial pneumonia and usual interstitial
pneumonia.
Eur Respir J.
2003;
22
239-244
- 6
Ouellette D R.
The safety of bronchoscopy in a pulmonary fellowship program.
Chest.
2006;
130
1185-1190
- 7
Hart R, Classen M.
Complications of diagnostic gastrointestinal endoscopy.
Endoscopy.
1990;
22
229-233
- 8
Pingleton S K, Harrison G F, Stechschulte D J et al..
Effect of location, pH, and temperature of instillate in bronchoalveolar lavage in
normal volunteers.
Am Rev Respir Dis.
1983;
128
1035-1037
- 9
Strumpf I J, Feld M K, Cornelius M J, Keogh B A, Crystal R G.
Safety of fiberoptic bronchoalveolar lavage in evaluation of interstitial lung disease.
Chest.
1981;
80
268-271
- 10
Djukanovic R, Wilson J W, Lai C K, Holgate S T, Howarth P H.
The safety aspects of fiberoptic bronchoscopy, bronchoalveolar lavage, and endobronchial
biopsy in asthma.
Am Rev Respir Dis.
1991;
143(4 Pt 1)
772-777
- 11
Hattotuwa K, Gamble E A, O'Shaughnessy T, Jeffery P K, Barnes N C.
Safety of bronchoscopy, biopsy, and BAL in research patients with COPD.
Chest.
2002;
122
1909-1912
- 12 Stanley MWH-S, Michelle J, Iber C. Bronchoalveolar Lavage. New York; Igaku-Shoin
1991: 240
- 13
Huang Y C, Bassett M A, Levin D, Montilla T, Ghio A J.
Acute phase reaction in healthy volunteers after bronchoscopy with lavage.
Chest.
2006;
129
1565-1569
- 14
Elston W J, Whittaker A J, Khan L N et al..
Safety of research bronchoscopy, biopsy and bronchoalveolar lavage in asthma.
Eur Respir J.
2004;
24
375-377
- 15
Van Vyve T, Chanez P, Bousquet J et al..
Safety of bronchoalveolar lavage and bronchial biopsies in patients with asthma of
variable severity.
Am Rev Respir Dis.
1992;
146
116-121
- 16
Busse W W, Wanner A, Adams K et al..
Investigative bronchoprovocation and bronchoscopy in airway diseases.
Am J Respir Crit Care Med.
2005;
172
807-816
- 17
Haslam P L, Baughman R P.
Report of ERS Task Force: guidelines for measurement of acellular components and standardization
of BAL.
Eur Respir J.
1999;
14
245-248
- 18
Rennard S I, Ghafouri M, Thompson A B et al..
Fractional processing of sequential bronchoalveolar lavage to separate bronchial and
alveolar samples.
Am Rev Respir Dis.
1990;
141
208-217
- 19
Lam S, Leriche J C, Kijek K, Phillips D.
Effect of bronchial lavage volume on cellular and protein recovery.
Chest.
1985;
88
856-859
- 20
Bronchoalveolar lavage constituents in healthy individuals, idiopathic pulmonary fibrosis,
and selected comparison groups. The BAL Cooperative Group Steering Committee.
Am Rev Respir Dis.
1990;
141(5 Pt 2)
S169-S202
- 21
Jones K P, Edwards J H, Reynolds S P, Peters T J, Davies B H.
A comparison of albumin and urea as reference markers in bronchoalveolar lavage fluid
from patients with interstitial lung disease.
Eur Respir J.
1990;
3
152-156
- 22
Dargaville P A, South M, Vervaart P, McDougall P N.
Validity of markers of dilution in small volume lung lavage.
Am J Respir Crit Care Med.
1999;
160
778-784
- 23
Rennard S I, Basset G, Lecossier D et al..
Estimation of volume of epithelial lining fluid recovered by lavage using urea as
marker of dilution.
J Appl Physiol.
1986;
60
532-538
- 24
Marcy T W, Merrill W W, Rankin J A, Reynolds H Y.
Limitations of using urea to quantify epithelial lining fluid recovered by bronchoalveolar
lavage.
Am Rev Respir Dis.
1987;
135
1276-1280
- 25
Ward C, Duddridge M, Fenwick J et al..
The origin of water and urea sampled at bronchoalveolar lavage in asthmatic and control
subjects.
Am Rev Respir Dis.
1992;
146
444-447
- 26
Ishizaka A, Watanabe M, Yamashita T et al..
New bronchoscopic microsample probe to measure the biochemical constituents in epithelial
lining fluid of patients with acute respiratory distress syndrome.
Crit Care Med.
2001;
29
896-898
- 27
Pugin J, Verghese G, Widmer M C, Matthay M A.
The alveolar space is the site of intense inflammatory and profibrotic reactions in
the early phase of acute respiratory distress syndrome.
Crit Care Med.
1999;
27
304-312
- 28
Yamazaki K, Ogura S, Ishizaka A, Oh-hara T, Nishimura M.
Bronchoscopic microsampling method for measuring drug concentration in epithelial
lining fluid.
Am J Respir Crit Care Med.
2003;
168
1304-1307
- 29
Sasabayashi M, Yamazaki Y, Tsushima K, Hatayama O, Okabe T.
Usefulness of bronchoscopic microsampling to detect the pathogenic bacteria of respiratory
infection.
Chest.
2007;
131
474-479
- 30
Larsson K, Tornling G, Gavhed D, Muller-Suur C, Palmberg L.
Inhalation of cold air increases the number of inflammatory cells in the lungs in
healthy subjects.
Eur Respir J.
1998;
12
825-830
- 31
Reynolds H Y.
Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the
1970s to 1980s.
Am J Respir Crit Care Med.
2005;
171
98-102
- 32
Carre P C, Mortenson R L, King Jr T E et al..
Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic
pulmonary fibrosis: a potential mechanism for the recruitment and activation of neutrophils
in lung fibrosis.
J Clin Invest.
1991;
88
1802-1810
- 33
Hunninghake G W, Gadek J E, Fales H M, Crystal R G.
Human alveolar macrophage-derived chemotactic factor for neutrophils: stimuli and
partial characterization.
J Clin Invest.
1980;
66
473-483
- 34
Merrill W W, Naegel G P, Matthay R A, Reynolds H Y.
Alveolar macrophage-derived chemotactic factor: kinetics of in vitro production and
partial characterization.
J Clin Invest.
1980;
65
268-276
- 35
Holt P G, Oliver J, Bilyk N et al..
Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells
in vivo by resident alveolar macrophages.
J Exp Med.
1993;
177
397-407
- 36
Peters-Golden M.
The alveolar macrophage: the forgotten cell in asthma.
Am J Respir Cell Mol Biol.
2004;
31
3-7
- 37
Lehnert B E, Valdez Y E, Sebring R J et al..
Airway intra-luminal macrophages: evidence of origin and comparisons to alveolar macrophages.
Am J Respir Cell Mol Biol.
1990;
3
377-391
- 38
Lofdahl J M, Wahlstrom J, Skold C M.
Different inflammatory cell pattern and macrophage phenotype in chronic obstructive
pulmonary disease patients, smokers and non-smokers.
Clin Exp Immunol.
2006;
145
428-437
- 39
Wu H M, Jin M, Marsh C B.
Toward functional proteomics of alveolar macrophages.
Am J Physiol Lung Cell Mol Physiol.
2005;
288
L585-L595
- 40
Frank J A, Wray C M, McAuley D F, Schwendener R, Matthay M A.
Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced
lung injury.
Am J Physiol Lung Cell Mol Physiol.
2006;
291
L1191-L1198
- 41
Fehrenbach H, Zissel G, Goldmann T et al..
Alveolar macrophages are the main source for tumour necrosis factor-alpha in patients
with sarcoidosis.
Eur Respir J.
2003;
21
421-428
- 42
Baughman R P, Drent M, Kavuru M et al..
Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement.
Am J Respir Crit Care Med.
2006;
174
795-802
- 43
Berenson C S, Garlipp M A, Grove L J, Maloney J, Sethi S.
Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease.
J Infect Dis.
2006;
194
1375-1384
- 44
Hodge S, Hodge G, Scicchitano R, Reynolds P N, Holmes M.
Alveolar macrophages from subjects with chronic obstructive pulmonary disease are
deficient in their ability to phagocytose apoptotic airway epithelial cells.
Immunol Cell Biol.
2003;
81
289-296
- 45
Berenson C S, Wrona C T, Grove L J et al..
Impaired alveolar macrophage response to Haemophilus antigens in chronic obstructive lung disease.
Am J Respir Crit Care Med.
2006;
174
31-40
- 46
De Brauwer E I, Jacobs J A, Nieman F et al..
Cytocentrifugation conditions affecting the differential cell count in bronchoalveolar
lavage fluid.
Anal Quant Cytol Histol.
2000;
22
416-422
- 47
Mordelet-Dambrine M, Arnoux A, Stanislas-Leguern G et al..
Processing of lung lavage fluid causes variability in bronchoalveolar cell count.
Am Rev Respir Dis.
1984;
130
305-306
- 48
Saltini C, Hance A J, Ferrans V J et al..
Accurate quantification of cells recovered by bronchoalveolar lavage.
Am Rev Respir Dis.
1984;
130
650-658
- 49
Curtis J L.
Cell-mediated adaptive immune defense of the lungs.
Proc Am Thorac Soc.
2005;
2
412-416
- 50
Lehmann C, Wilkening A, Leiber D et al..
Lymphocytes in the bronchoalveolar space reenter the lung tissue by means of the alveolar
epithelium, migrate to regional lymph nodes, and subsequently rejoin the systemic
immune system.
Anat Rec.
2001;
264
229-236
- 51
Tsao T C, Chen C H, Hong J H et al..
Shifts of T4/T8 T lymphocytes from BAL fluid and peripheral blood by clinical grade
in patients with pulmonary tuberculosis.
Chest.
2002;
122
1285-1291
- 52
Hodge G, Hodge S, Reynolds P N, Holmes M.
Compartmentalization of intracellular proinflammatory cytokines in bronchial intraepithelial
T cells of stable lung transplant patients.
Clin Exp Immunol.
2006;
145
413-419
- 53
Twigg H L, Soliman D M, Day R B et al..
Lymphocytic alveolitis, bronchoalveolar lavage viral load, and outcome in human immunodeficiency
virus infection.
Am J Respir Crit Care Med.
1999;
159(5 Pt 1)
1439-1444
- 54
Twigg III H L, Spain B A, Soliman D M et al..
Production of interferon-gamma by lung lymphocytes in HIV-infected individuals.
Am J Physiol.
1999;
276(2 Pt 1)
L256-L262
- 55
Brenchley J M, Schacker T W, Ruff L E et al..
CD4 + T cell depletion during all stages of HIV disease occurs predominantly in the
gastrointestinal tract.
J Exp Med.
2004;
200
749-759
- 56
Mehandru S, Poles M A, Tenner-Racz K et al..
Primary HIV-1 infection is associated with preferential depletion of CD4 + T lymphocytes
from effector sites in the gastrointestinal tract.
J Exp Med.
2004;
200
761-770
- 57
Ely K H, Cookenham T, Roberts A D, Woodland D L.
Memory T cell populations in the lung airways are maintained by continual recruitment.
J Immunol.
2006;
176
537-543
- 58
Delude R L.
Flow cytometry.
Crit Care Med.
2005;
33(Suppl 12)
S426-S428
- 59
Kaleem Z.
Flow cytometric analysis of lymphomas: current status and usefulness.
Arch Pathol Lab Med.
2006;
130
1850-1858
- 60
Betts M R, Brenchley J M, Price D A et al..
Sensitive and viable identification of antigen-specific CD8 + T cells by a flow cytometric
assay for degranulation.
J Immunol Methods.
2003;
281
65-78
- 61
Morgan E, Varro R, Sepulveda H et al..
Cytometric bead array: a multiplexed assay platform with applications in various areas
of biology.
Clin Immunol.
2004;
110
252-266
- 62
Kern F, LiPira G, Gratama J W, Manca F, Roederer M.
Measuring Ag-specific immune responses: understanding immunopathogenesis and improving
diagnostics in infectious disease, autoimmunity and cancer.
Trends Immunol.
2005;
26
477-484
- 63
Barry S M, Condez A, Johnson M A, Janossy G.
Determination of bronchoalveolar lavage leukocyte populations by flow cytometry in
patients investigated for respiratory disease.
Cytometry.
2002;
50
291-297
- 64
Roberts S D, Kohli L L, Wood K L, Wilkes D S, Knox K S.
CD4 + CD28-T cells are expanded in sarcoidosis.
Sarcoidosis Vasc Diffuse Lung Dis.
2005;
22
13-19
- 65
Skold C M, Eklund A, Hallden G, Hed J.
Autofluorescence in human alveolar macrophages from smokers: relation to cell surface
markers and phagocytosis.
Exp Lung Res.
1989;
15
823-835
- 66
Smith P A, Kohli L M, Wood K L et al..
Cytometric analysis of BAL T cells labeled with a standardized antibody cocktail correlates
with immunohistochemical staining.
Cytometry.
2006;
70
170-178
- 67
Moyron-Quiroz J E, Rangel-Moreno J, Kusser K et al..
Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity.
Nat Med.
2004;
10
927-934
- 68
Ersch J, Tschernig T, Stallmach T.
Frequency and potential cause of bronchus-associated lymphoid tissue in fetal lungs.
Pediatr Allergy Immunol.
2005;
16
295-298
- 69
Rangel-Moreno J, Hartson L, Navarro C et al..
Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications
of rheumatoid arthritis.
J Clin Invest.
2006;
116
3183-3194
- 70
Suda T, Chida K, Hayakawa H et al..
Development of bronchus-associated lymphoid tissue in chronic hypersensitivity pneumonitis.
Chest.
1999;
115
357-363
- 71
Tschernig T, Pabst R.
Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung
but in different diseases.
Pathobiology.
2000;
68
1-8
- 72
Hiller A S, Tschernig T, Kleemann W J, Pabst R.
Bronchus-associated lymphoid tissue (BALT) and larynx-associated lymphoid tissue (LALT)
are found at different frequencies in children, adolescents and adults.
Scand J Immunol.
1998;
47
159-162
- 73
Sue-Chu M, Karjalainen E M, Altraja A et al..
Lymphoid aggregates in endobronchial biopsies from young elite cross-country skiers.
Am J Respir Crit Care Med.
1998;
158
597-601
- 74
Bienenstock J, McDermott M R.
Bronchus- and nasal-associated lymphoid tissues.
Immunol Rev.
2005;
206
22-31
- 75
Prussin C, Metcalfe D D.
5. IgE, mast cells, basophils, and eosinophils.
J Allergy Clin Immunol.
2006;
117(Suppl 2)
S450-S456
- 76
Kariyawasam H H, Robinson D S.
The eosinophil: the cell and its weapons, the cytokines, its locations.
Semin Respir Crit Care Med.
2006;
27
117-127
- 77
Liu L Y, Sedgwick J B, Bates M E et al..
Decreased expression of membrane IL-5 receptor alpha on human eosinophils, I: Loss
of membrane IL-5 receptor alpha on airway eosinophils and increased soluble IL-5 receptor
alpha in the airway after allergen challenge.
J Immunol.
2002;
169
6452-6458
- 78
Liu L Y, Jarjour N N, Busse W W, Kelly E A.
Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar
lavage fluid after segmental antigen challenge.
J Allergy Clin Immunol.
2003;
112
556-562
- 79
Das A M, Vaddi K G, Solomon K A et al..
Selective inhibition of eosinophil influx into the lung by small molecule CC chemokine
receptor 3 antagonists in mouse models of allergic inflammation.
J Pharmacol Exp Ther.
2006;
318
411-417
- 80
Julius P, Hochheim D, Boser K et al..
Interleukin-5 receptors on human lung eosinophils after segmental allergen challenge.
Clin Exp Allergy.
2004;
34
1064-1070
- 81
Hogaboam C M, Carpenter K J, Schuh J M et al..
The therapeutic potential in targeting CCR5 and CXCR4 receptors in infectious and
allergic pulmonary disease.
Pharmacol Ther.
2005;
107
314-328
- 82
Luijk B, Lindemans C A, Kanters D et al..
Gradual increase in priming of human eosinophils during extravasation from peripheral
blood to the airways in response to allergen challenge.
J Allergy Clin Immunol.
2005;
115
997-1003
- 83
Woodman L, Sutcliffe A, Kaur D et al..
Chemokine concentrations and mast cell chemotactic activity in BAL fluid in patients
with eosinophilic bronchitis and asthma, and in normal control subjects.
Chest.
2006;
130
371-378
- 84
Akbari O, Faul J L, Hoyte E G et al..
CD4 + invariant T-cell-receptor + natural killer T cells in bronchial asthma.
N Engl J Med.
2006;
354
1117-1129
- 85
Jain P, Sandur S, Meli Y et al..
Role of flexible bronchoscopy in immunocompromised patients with lung infiltrates.
Chest.
2004;
125
712-722
- 86
Hage C A, Davis T E, Egan L et al..
Diagnosis of pulmonary histoplasmosis and blastomycosis by detection of antigen in
bronchoalveolar lavage fluid using an improved second-generation enzyme-linked immunoassay.
Respir Med.
2007;
101
43-47
- 87
Wheat L J, Garringer T, Brizendine E, Connolly P.
Diagnosis of histoplasmosis by antigen detection based upon experience at the histoplasmosis
reference laboratory.
Diagn Microbiol Infect Dis.
2002;
43
29-37
- 88
Musher B, Fredricks D, Leisenring W et al..
Aspergillus galactomannan enzyme immunoassay and quantitative PCR for diagnosis of invasive aspergillosis
with bronchoalveolar lavage fluid.
J Clin Microbiol.
2004;
42
5517-5522
- 89
Kralovic S M, Rhodes J C.
Utility of routine testing of bronchoalveolar lavage fluid for cryptococcal antigen.
J Clin Microbiol.
1998;
36
3088-3089
- 90
Baughman R P, Rhodes J C, Dohn M N, Henderson H, Frame P T.
Detection of cryptococcal antigen in bronchoalveolar lavage fluid: a prospective study
of diagnostic utility.
Am Rev Respir Dis.
1992;
145
1226-1229
- 91
Malabonga V M, Basti J, Kamholz S L.
Utility of bronchoscopic sampling techniques for cryptococcal disease in AIDS.
Chest.
1991;
99
370-372
- 92
Hage C A, Reynolds J M, Durkin M, Wheat L J, Knox K S.
Plasmalyte as a cause of false-positive results for Aspergillus galactomannan in bronchoalveolar lavage fluid.
J Clin Microbiol.
2007;
45
676-677
- 93
Hayden R T, Uhl J R, Qian X et al..
Direct detection of Legionella species from bronchoalveolar lavage and open lung biopsy specimens: comparison of
LightCycler PCR, in situ hybridization, direct fluorescence antigen detection, and
culture.
J Clin Microbiol.
2001;
39
2618-2626
- 94
Wattiez R, Falmagne P.
Proteomics of bronchoalveolar lavage fluid.
J Chromatogr B Analyt Technol Biomed Life Sci.
2005;
815
169-178
- 95
Magi B, Bargagli E, Bini L, Rottoli P.
Proteome analysis of bronchoalveolar lavage in lung diseases.
Proteomics.
2006;
6
6354-6369
- 96
Hirsch J, Hansen K C, Burlingame A L, Matthay M A.
Proteomics: current techniques and potential applications to lung disease.
Am J Physiol Lung Cell Mol Physiol.
2004;
287
L1-L23
- 97
Bowler R P, Ellison M C, Reisdorph N.
Proteomics in pulmonary medicine.
Chest.
2006;
130
567-574
- 98
Chiu L M, Amsden G W.
Intrapulmonary pharmacokinetics of antibacterial agents: implications for therapeutics.
Am J Respir Med.
2002;
1
201-209
- 99
Capitano B, Mattoes H M, Shore E et al..
Steady-state intrapulmonary concentrations of moxifloxacin, levofloxacin, and azithromycin
in older adults.
Chest.
2004;
125
965-973
- 100
Conte Jr J E, Golden J A, McIver M, Zurlinden E.
Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in
healthy volunteer subjects.
Int J Antimicrob Agents.
2006;
28
114-121
- 101
Conte Jr J E, Golden J A, Kelley M G, Zurlinden E.
Intrapulmonary pharmacokinetics and pharmacodynamics of meropenem.
Int J Antimicrob Agents.
2005;
26
449-456
- 102
Conte Jr J E, Golden J A, Kelly M G, Zurlinden E.
Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline.
Int J Antimicrob Agents.
2005;
25
523-529
- 103
Creuwels L A, van Golde L M, Haagsman H P.
The pulmonary surfactant system: biochemical and clinical aspects.
Lung.
1997;
175
1-39
- 104
Rooney S A.
The surfactant system and lung phospholipid biochemistry.
Am Rev Respir Dis.
1985;
131
439-460
- 105
Wright J R, Youmans D C.
Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage.
Am J Physiol.
1993;
264(4 Pt 1)
L338-L344
- 106
Juers J A, Rogers R M, McCurdy J B, Cook W W.
Enhancement of bactericidal capacity of alveolar macrophages by human alveolar lining
material.
J Clin Invest.
1976;
58
271-275
- 107
van Iwaarden F, Welmers B, Verhoef J, Haagsman H P, van Golde L M.
Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar
macrophages.
Am J Respir Cell Mol Biol.
1990;
2
91-98
- 108
Weissbach S, Neuendank A, Pettersson M, Schaberg T, Pison U.
Surfactant protein A modulates release of reactive oxygen species from alveolar macrophages.
Am J Physiol.
1994;
267(6 Pt 1)
L660-L666
- 109
Ansfield M J, Benson B J.
Identification of the immunosuppressive components of canine pulmonary surface active
material.
J Immunol.
1980;
125
1093-1098
- 110
Wilsher M L, Hughes D A, Haslam P L.
Immunoregulatory properties of pulmonary surfactant: influence of variations in the
phospholipid profile.
Clin Exp Immunol.
1988;
73
117-122
- 111
Wilsher M L, Hughes D A, Haslam P L.
Immunoregulatory properties of pulmonary surfactant: effect of lung lining fluid on
proliferation of human blood lymphocytes.
Thorax.
1988;
43
354-359
- 112
Possmayer F.
A proposed nomenclature for pulmonary surfactant-associated proteins.
Am Rev Respir Dis.
1988;
138
990-998
- 113
Gunther A, Siebert C, Schmidt R et al..
Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and
cardiogenic lung edema.
Am J Respir Crit Care Med.
1996;
153
176-184
- 114
Hite R D, Seeds M C, Bowton D L et al..
Surfactant phospholipid changes after antigen challenge: a role for phosphatidylglycerol
in dysfunction.
Am J Physiol Lung Cell Mol Physiol.
2005;
288
L610-L617
- 115
Erpenbeck V J, Schmidt R, Gunther A, Krug N, Hohlfeld J M.
Surfactant protein levels in bronchoalveolar lavage after segmental allergen challenge
in patients with asthma.
Allergy.
2006;
61
598-604
- 116
Gunther A, Schmidt R, Nix F et al..
Surfactant abnormalities in idiopathic pulmonary fibrosis, hypersensitivity pneumonitis
and sarcoidosis.
Eur Respir J.
1999;
14
565-573
- 117
Griese M, Essl R, Schmidt R et al..
Sequential analysis of surfactant, lung function and inflammation in cystic fibrosis
patients.
Respir Res.
2005;
6
133
- 118
Daimon T, Tajima S, Oshikawa K et al..
KL-6 and surfactant proteins A and D in serum and bronchoalveolar lavage fluid in
patients with acute eosinophilic pneumonia.
Intern Med.
2005;
44
811-817
- 119
Kunitake R, Kuwano K, Yoshida K et al..
KL-6, surfactant protein A and D in bronchoalveolar lavage fluid from patients with
pulmonary sarcoidosis.
Respiration.
2001;
68
488-495
- 120
Xing J C, Chen W H, Han W H et al..
Changes of tumor necrosis factor, surfactant protein A, and phospholipids in bronchoalveolar
lavage fluid in the development and progression of coal workers' pneumoconiosis.
Biomed Environ Sci.
2006;
19
124-129
- 121
Kuroki Y, Takahashi H, Chiba H, Akino T.
Surfactant proteins A and D: disease markers.
Biochim Biophys Acta.
1998;
1408
334-345
- 122
Takahashi H, Sano H, Chiba H, Kuroki Y.
Pulmonary surfactant proteins A and D: innate immune functions and biomarkers for
lung diseases.
Curr Pharm Des.
2006;
12
589-598
- 123
Twigg III H L.
Humoral immune defense (antibodies): recent advances.
Proc Am Thorac Soc.
2005;
2
417-421
- 124
Merrill W W, Naegel G P, Olchowski J J, Reynolds H Y.
Immunoglobulin G subclass proteins in serum and lavage fluid of normal subjects: quantitation
and comparison with immunoglobulins A and E.
Am Rev Respir Dis.
1985;
131
584-587
- 125
Reynolds H Y, Merrill W M, Amento E P, Naegel G P.
Immunoglobulin A in secretions from the lower human respiratory tract.
Adv Exp Med Biol.
1978;
107
553-564
- 126
Holter J F, Weiland J E, Pacht E R, Gadek J E, Davis W B.
Protein permeability in the adult respiratory distress syndrome: loss of size selectivity
of the alveolar epithelium.
J Clin Invest.
1986;
78
1513-1522
- 127
Hol B E, van de Graaf E A, Out T A, Hische E A, Jansen H M.
IgM in the airways of asthma patients.
Int Arch Allergy Appl Immunol.
1991;
96
12-18
- 128
Reynolds S P, Edwards J H, Jones K P, Davies B H.
Immunoglobulin and antibody levels in bronchoalveolar lavage fluid from symptomatic
and asymptomatic pigeon breeders.
Clin Exp Immunol.
1991;
86
278-285
- 129
Wilson D R, Merrett T G, Varga E M et al..
Increases in allergen-specific IgE in BAL after segmental allergen challenge in atopic
asthmatics.
Am J Respir Crit Care Med.
2002;
165
22-26
- 130
Bergmann M, Jonasson S, Klause N et al..
Analysis of immunoglobulins in sarcoidosis.
Sarcoidosis Vasc Diffuse Lung Dis.
1997;
14
139-145
- 131
Out T A, van de Graaf E A, van den Berg N J, Jansen H M.
IgG subclasses in bronchoalveolar lavage fluid from patients with asthma.
Scand J Immunol.
1991;
33
719-727
- 132
Qvarfordt I, Riise G C, Andersson B A, Larsson S.
IgG subclasses in smokers with chronic bronchitis and recurrent exacerbations.
Thorax.
2001;
56
445-449
- 133
Qvarfordt I, Riise G C, Larsson S et al..
Immunological findings in blood and bronchoalveolar lavage fluid in chronic bronchitis
patients with recurrent infectious exacerbations.
Eur Respir J.
1998;
11
46-54
- 134
Fahy R J, Diaz P T, Hart J, Wewers M D.
BAL and serum IgG levels in healthy asymptomatic HIV-infected patients.
Chest.
2001;
119
196-203
- 135
Gordon S B, Miller D E, Day R B et al..
Pulmonary immunoglobulin responses to Streptococcus pneumoniae are altered but not reduced in human immunodeficiency virus-infected Malawian adults.
J Infect Dis.
2003;
188
666-670
- 136
Armbruster C, Krugluger W, Huber M, Stephan K.
Immunoglobulin G Fc(gamma) receptor expression on polymorphonuclear cells in bronchoalveolar
lavage fluid of HIV-infected and HIV-seronegative patients with bacterial pneumonia.
Clin Chem Lab Med.
2004;
42
192-197
Kenneth S KnoxM.D.
Division of Pulmonary and Critical Care Medicine, Indiana University Medical Center,
Richard L. Roudebush VA Medical Center
1481 West 10th St., VA 111P-IU, Indianapolis, IN 46202
Email: kknox1@iupui.edu